如图,两根长直导线竖直插入光滑绝缘水平桌面上的M、N两小孔中,O为M、N连线中点,连线上a、b两点关于O点对称.导线均通有大小相等、方向向上的电流.已知长直导线在周围产生的磁场的磁感应强度,式中k是常数、I是导线中电流、r为点到导线的距离.一带正电的小球以初速度v0从a点出发沿连线运动到b点.关于上述过程,下列说法正确的是( )
①小球先做加速运动后做减速运动 ②小球一直做匀速直线运动
③小球对桌面的压力先减小后增大 ④小球对桌面的压力一直在增大
A.①③ B.①④ C.②③ D.②④
如图,一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m、带电荷量为+q的小球相连,静止在光滑绝缘水平面上的A点.当施加水平向右的匀强电场E后,小球从静止开始在A、B之间做简谐运动,在弹性限度内下列关于小球运动情况说法中正确的是( )
A.小球在A、B的速度为零而加速度相同
B.小球简谐振动的振幅为
C.从A到B的过程中,小球和弹簧系统的机械能不断增大
D.将小球由A的左侧一点由静止释放,小球简谐振动的周期增大
下列有关物理史和物理知识的说法正确的是( )
A.单摆在整个运动过程中一定有一个位置合外力为零
B.简谐波中质点的振动方向总是垂直于波的传播方向
C.法拉第最先引入“场”的概念,并最早发现了电流的磁效应现象
D.回路中磁通量为零的时刻其磁通变化率可以不为零
某电视台“快乐向前冲”节目的场地设施如图所示,AB为水平直轨道,上面安装有电动悬挂器,可以载人运动,水面上漂浮着一个半径为R、角速度为ω、铺有海绵垫的转盘,转盘的轴心离平台的水平距离为L,平台边缘与转盘平面的高度差为H.选手抓住悬挂器可以在电动机的带动下,从A点下方的平台边缘处沿水平方向做初速度为零、加速度为a的匀加速直线运动.选手必须作好判断,在合适的位置释放,才能顺利落在转盘上.设人的质量为m(不计身高),人与转盘间的最大静摩擦力为μmg,重力加速度为g.
(1)假设选手落到转盘上瞬间相对转盘速度立即变为零,为保证他落在任何位置都不会被甩下转盘,转盘的角速度ω应限制在什么范围?
(2)若已知H=5 m,L=8 m,a=2 m/s2,g=10 m/s2,且选手从某处C点释放能恰好落到转盘的圆心上,则他是从平台出发后多长时间释放悬挂器的?
(3)若电动悬挂器开动后,针对不同选手的动力与该选手重力关系皆为F=0.6mg,悬挂器在轨道上运动时存在恒定的摩擦阻力,选手在运动到上面(2)中所述位置C点时,因恐惧没有释放悬挂器,但立即关闭了它的电动机,则按照(2)中数据计算悬挂器载着选手还能继续向右滑行多远的距离?
宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆轨道运行.设每个星体的质量均为m,引力常量为G.
(1)试求第一种形式下,星体运动的线速度大小和周期;
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?
如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线的夹角θ=30°,一条长为l的绳,一端固定在圆锥体的顶点O,另一端系一个质量为m的小球(视作质点),小球以速率v绕圆锥体的轴线做水平匀速圆周运动,则
(1)当v1=时,绳对小球的拉力多大?
(2)当v2=时,绳对小球的拉力多大?