如图所示,滑板运动员从倾角为53°的斜坡顶端滑下,滑下的过程中他突然发现在斜面底端有一个高h=1.4 m、宽L=1.2 m的长方体障碍物,为了不触及这个障碍物,他必须在距水平地面高度H=3.2 m的A点沿水平方向跳起离开斜面(竖直方向的速度变为0)。已知运动员的滑板与斜面间的动摩擦因数μ=0.1,忽略空气阻力,重力加速度g取10m/s2。(已知sin53°=0.8,cos53°=0.6)求:
(1)运动员在斜面上滑行的加速度的大小;
(2)若运动员不触及障碍物,他从斜面上起跳后到落至水平面的过程所经历的时间;
(3)运动员为了不触及障碍物,他从A点沿水平方向起跳的最小速度。
硅光电池是一种可将光能转化为电能的元件。某同学利用图(甲)所示电路探究某硅光电池的路端电压U与电流I的关系。图中定值电阻R0=2Ω,电压表、电流表均可视为理想电表。
(1)用“笔画线”代替导线,根据电路图,将图(乙)中的实物电路补充完整。
(2)实验一:用一定强度的光照射硅光电池,闭合电键S,调节可调电阻R的阻值,通过测量得到该电池的U—I曲线a(见图丙)。则由图象可知,当电流小于200 mA时,该硅光电池的电动势为______V,内阻为______Ω。
(3)实验二:减小光照强度,重复实验,通过测量得到该电池的U—I曲线b(见图丙)。当可调电阻R的阻值调到某值时,若该电路的路端电压为1.5V,由曲线b可知,此时可调电阻R的电功率约为________W(结果保留两位有效数字)。
伽利略在《两种新科学的对话》一书中,提出猜想:物体沿斜面下滑是一种匀变速直线运动,同时他还实验验证了该猜想。某小组学生依据伽利略描述的实验方案,设计了如图(a)所示的装置,探究物体沿斜面下滑是否做匀变速直线运动。实验操作步骤如下:
①让滑块从离挡板某一距离L处由静止沿某一倾角θ的斜面下滑,并同时打开装置中的阀门,使水箱中的水流到量筒中;
②当滑块碰到挡板的同时关闭水箱阀门(假设水流出时均匀稳定);
③记录下量筒收集的水量V;
④改变滑块起始位置离挡板的距离,重复以上操作;
⑤测得的数据见表格。
次数 | 1 | 2 | 3 | 4 | 5 | 6 |
L(m) | 4.5 | 3.9 | 3.0 | 2.1 | 1.5 | 0.9 |
V(mL) | 90 | 84 |
| 62 | 52 | 40 |
(1)该实验利用量筒中收集的水量来表示 。(填序号)
A.水箱中水的体积 B.水从水箱中流出的速度
C.滑块下滑的时间 D.滑块下滑的位移
(2)小组同学漏填了第3组数据,实验正常,你估计这组水量V= mL。
(你可能用到的数据 )
(3)若保持倾角θ不变,增大滑块质量,则相同的L,水量V将 (填“增大”“不变”或“减小”)若保持滑块质量不变,增大倾角θ,则相同的L,水量V将 。(填“增大”“不变”或“减小”)
如图所示,一带正电小球穿在一根绝缘粗糙直杆上,杆与水平方向成θ,整个空间存在
着竖直向上的匀强电场和垂直纸面向外的匀强磁场,先给小球一初速度,使小球沿杆向下运动,在A点时的动能为100J,在C点时动能减为零,B为AC的中点,那么带电小球在运动过程中
A.到达C点后小球可能沿杆向上运动
B.小球在AB段克服摩擦力做的功与在BC段克服摩擦力做的功不等
C.小球在B点时的动能为50J
D.小球电势能的增加量等于重力势能的减少量
如图所示,在x>O、y>O的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B.现有一质量为m、电量为q的带正电粒子,从在x轴上的某点P沿着与x轴成30°角的方向射入磁场。不计重力的影响,则下列有关说法中正确的是
A.粒子在磁场中运动所经历的时间可能为
B.粒子在磁场中运动所经历的时间可能为
C.只要粒子的速率合适,粒子就可能通过坐标原点
D.粒子一定不可能通过坐标原点
如图所示,物体A、B的质量分别为mA、mB,且mB < mA < 2mB。A和B用细绳连接后跨过光滑的定滑轮,A静止在倾角θ=30°的斜面上,斜面下端通过一铰链与地面固定,可自由转动,细绳平行于斜面。若将斜面倾角θ 缓慢增大,在增大过程中物体A先保持静止,到达一定角度后又沿斜面下滑,则下列判断正确的是
A.绳对滑轮的作用力随θ的增大而增大
B.物体A受到的摩擦力先减小、再增大
C.物体A对斜面的压力一直在减小
D.物体A沿斜面下滑后做匀加速运动