(1)(6分)某同学在“探究弹力和弹簧伸长的关系”时,安装好实验装置,让刻度尺零刻度与弹簧上端平齐,在弹簧下端挂1个钩码,静止时弹簧长度为l1,如图1所示,图2是此时固定在弹簧挂钩上的指针在刻度尺(最小分度是1毫米)上位置的放大图,示数l1= cm.。在弹簧下端分别挂2个、3个、4个、5个相同钩码,静止时弹簧长度分别是l2、l3、l4、l5。已知每个钩码质量是50g,挂2个钩码时,弹簧弹力F2= N(当地重力加速度g=9.8m/s2)。要得到弹簧伸长量x,还需要测量的是 。作出F-x曲线,得到弹力与弹簧伸长量的关系。
(2)(11分)用实验测一电池的内阻r和一待测电阻的阻值Rx。已知电池的电动势约6V,电池内阻和待测电阻阻值都为数十欧。可选用的实验器材有:
电流表A1(量程0~30mA);
电流表A2(量程0~100mA);
电压表V(量程0~6V);
滑动变阻器R1(阻值0~5Ω);
滑动变阻器R2(阻值0~300Ω);
开关S一个,导线若干条。
某同学的实验过程如下:
Ⅰ.设计如图3所示的电路图,正确连接电路。
Ⅱ.将R的阻值调到最大,闭合开关,逐次调小R的阻值,测出多组U和I的值,并记录。以U为纵轴,I为横轴,得到如图4所示的图线。
Ⅲ.断开开关,将Rx改接在B、C之间,A与B直接相连,其他部分保持不变。重复Ⅱ的步骤,得到另一条U-I图线,图线与横轴I的交点坐标为(I0,0),与纵轴U的交点坐标为(0,U0)。
回答下列问题:
①电流表应选用 ,滑动变阻器应选用 ;
②由图4的图线,得电源内阻r= Ω;
③用I0、U0和r表示待测电阻的关系式Rx= ,代入数值可得Rx;
④若电表为理想电表,Rx接在B、C之间与接在A、B之间,滑动变阻器滑片都从最大阻值位置调到某同一位置,两种情况相比,电流表示数变化范围 ,电压表示数变化范围 。(选填“相同”或“不同”)
如图所示,S处有一电子源,可向纸面内任意方向发射电子,平板MN垂直于纸面,在纸面内的长度L=9.1cm,中点O与S间的距离d=4.55cm,MN与SO直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B=2.0×10-4T,电子质量m=9.1×10-31kg,电荷量e=-1.6×10-19C,不计电子重力。电子源发射速度v=1.6×106m/s的一个电子,该电子打在板上可能位置的区域的长度为l,则
A.θ=90°时,l=9.1cm B.θ=60°时,l=9.1cm
C.θ=45°时,l=4.55cm D.θ=30°时,l=4.55cm
如图所示,半圆槽光滑、绝缘、固定,圆心是O,最低点是P,直径MN水平,a、b是两个完全相同的带正电小球(视为点电荷),b固定在M点,a从N点静止释放,沿半圆槽运动经过P点到达某点Q(图中未画出)时速度为零。则小球a
A.从N到Q的过程中,重力与库仑力的合力先增大后减小
B.从N到P的过程中,速率先增大后减小
C.从N到Q的过程中,电势能一直增加
D.从P到Q的过程中,动能减少量小于电势能增加量
登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星。地球和火星公转视为匀速圆周运动,忽略行星自转影响。根据下表,火星和地球相比
行星 | 半径/m | 质量/kg | 轨道半径/m |
地球 | 6.4×106 | 6.0×1024 | 1.5×1011 |
火星 | 3.4×106 | 6.4×1023 | 2.3×1011 |
A.火星的公转周期较小
B.火星做圆周运动的加速度较小
C.火星表面的重力加速度较大
D.火星的第一宇宙速度较大
小型手摇发电机线圈共N匝,每匝可简化为矩形线圈abcd,磁极间的磁场视为匀强磁场,方向垂直于线圈中心轴OO′,线圈绕OO′匀速转动,如图所示。矩形线圈ab边和cd边产生的感应电动势的最大值都为e0,不计线圈电阻,则发电机输出电压
A.峰值是e0 B.峰值是2e0 C.有效值是 D.有效值是
直线P1P2过均匀玻璃球球心O,细光束a、b平行且关于P1P2对称,由空气射入玻璃球的光路如图。a、b光相比
A.玻璃对a光的折射率较大
B.玻璃对a光的临界角较小
C.b光在玻璃中的传播速度较小
D.b光在玻璃中的传播时间较短