(14分)如图所示,真空中有方向垂直纸面向里的匀强磁场和方向沿x轴正方向的匀强电场,当质量为m的带电粒子以速度v沿y轴正方向射入该区域时,恰好能沿y轴做匀速直线运动;若撤去磁场只保留电场,粒子以相同的速度从O点射入,经过一段时间后通过坐标为(L,2L)的b点;若撤去电场,只保留磁场,并在直角坐标系xOy的原点O处放置一粒子源,它能向各个方向发射质量均为m、速度均为v的带电粒子,不计粒子的重力和粒子之间的相互作用力。求:
(1)只保留电场时,粒子从O点运动到b点,电场力所做的功W;
(2)只保留磁场时,粒子源发射的粒子从O点第一次运动到坐标为(0,2L)的a点所用的时间t。
(12分)如图所示,倾角为θ的足够长光滑绝缘斜面上存在宽度均为L的匀强电场和匀强磁场区域,电场的下边界与磁场的上边界相距为L,其中电场方向沿斜面向上,磁场方向垂直于斜面向下、磁感应强度的大小为B。电荷量为q的带正电小球(视为质点)通过长度为4L的绝缘轻杆与边长为L、电阻为R的正方形单匝线框相连,它们的总质量为m,置于斜面上,线框下边与磁场的上边界重合。现将该装置由静止释放,当线框下边刚离开磁场时恰好做匀速运动;当小球运动到电场的下边界时速度恰好减为0。已知L=1m,B=0.8T,q=2.2×10-6C,R=0.1Ω,m=0.8kg,θ=53°,sin53°=0.8,取g=10m/s2。求:
(1)线框做匀速运动时的速度v;
(2)电场强度E的大小;
(3)足够长时间后小球到达的最低点与电场上边界的距离x。
(10分)如图所示,电源电动势E=16V、内阻r=1Ω,电阻R1=14Ω。间距d=0.2m的两平行金属板水平放置,板间分布有垂直于纸面向里、磁感应强度B=1T的匀强磁场。闭合开关S,板间电场视为匀强电场,将一带电的小球以初速度v0=0.1m/s沿两板间中线水平射入板间。设滑动变阻器接入电路的阻值为R2。不计空气的阻力,取g=10m/s2,求:
(1)当R2=17Ω时电阻R2消耗的电功率P2;
(2)若小球进入板间做匀速圆周运动并与板相碰,碰时速度与初速度的夹角为θ=60°,求滑动变阻器接入电路的阻值R2′.
(8分)如图所示,倾角为θ的斜面处于竖直向下的匀强电场中,在斜面上某点以初速度为v0水平抛出一个质量为m的带正电小球,小球在电场中受到的电场力与小球所受的重力相等。设斜面足够长,地球表面重力加速度为g,不计空气的阻力,求:
(1)小球落到斜面所需时间t;
(2)小球从水平抛出至落到斜面的过程中电势能的变化量ΔE。
(10分)影响物质材料电阻率的因素很多,一般金属材料的电阻率随温度的升高而增大,而半导体材料的电阻率则与之相反,随温度的升高而减少。某课题研究组需要研究某种导电材料的导电规律,他们用该种导电材料制作成电阻较小的线状元件Z做实验,测量元件Z中的电流随两端电压从零逐渐增大过程中的变化规律。
(1)他们应选用哪个电路进行实验?________
(2)实验测得元件Z的电压与电流的关系如下表所示。
U/V | 0 | 0.40 | 0.60 | 0.80 | 1.00 | 1.20 | 1.50 | 1.60 |
I/A | 0 | 0.20 | 0.45 | 0.80 | 1.25 | 1.80 | 2.80 | 3.20 |
根据表中数据,判断元件Z是__________材料(选填“金属”、“半导体”);
(3)用螺旋测微器测得线状元件Z的直径如图所示,则元件Z的直径是_________mm;
(4)把元件Z接入如图所示的电路中,当电阻R的阻值为2Ω时电流表的读数为1.25A;当电阻R的阻值为3.6Ω时电流表的读数为0.80A。结合上表数据可求得电池的电动势为E=_____V,内阻为r=______Ω。
(6分)如图所示为“研究电磁感应现象”的实验装置图。
(1)将图中所缺的导线补画完整;
(2)在如果在闭合电键时发现灵敏电流计的指针向右偏了一下;那么合上电键后,将滑线变阻器的滑片P向右滑动时,电流计指针将________________。(选填“向右偏转”、“向左偏转”或“指零”)