以相同初速度将两个物体同时竖直向上抛出并开始计时,一个物体所受空气阻力可以忽略,另一个物体所受空气阻力大小恒定不变,下列用虚线和实线描述两物体运动过程的v-t图像可能正确的( )
伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展.利用如图所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐减低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.根据三次实验结果的对比,可以得到的最直接的结论是( )
A.如果斜面光滑,小球将上升到与O点等高的位置
B.如果小球不受力,它将一直保持匀速运动或静止状态
C.如果小球受到力的作用,它的运动状态将发生改变
D.小球受到的力一定时,质量越大,它的加速度越小
(15分)如图所示,在xoy竖直平面内,长L的绝缘轻绳一端固定在第一象限的P点,另一端栓有一质量为m、带电荷量为+q的小球,OP距离也为L且与x轴的夹角为60∘.在x轴上方有水平向左的匀强电场,场强大小为,在x轴下方有竖直向上的匀强电场,场强大小为mg/q,过O和P两点的虚线右侧存在方向垂直xOy平面向外、磁感应强度为B的匀强磁场。小球置于y轴上的C点时,绳恰好伸直且与y轴夹角为30∘,小球由静止释放后将沿CD方向做直线运动,到达D点时绳恰好绷紧,小球沿绳方向的分速度立即变为零,并以垂直于绳方向的分速度摆下,到达O点时将绳断开。不计空气阻力。求:
(1)小球刚释放瞬间的加速度大小a;
(2)小球到达O点时的速度大小v;
(3)小球从O点开始到最终离开x轴的时间t.
(12分)如图所示,半径为r=1m的长圆柱体绕水平轴OO′以角速度ω=2rad/s匀速转动,将一质量为m=1kg的物体A(可看作质点)放在圆柱体的正上方,并用平行于转轴的光滑挡板(图中未画出),挡住使它不随着圆柱体一起转动而下滑,物块与圆柱体间动摩擦因数为0.4。现用平行于水平转轴的力F推物体,使物体以a=2m/s2的加速度,向右由静止开始匀加速滑动并计时,整个过程没有脱离圆柱体,重力加速度g取10m/s2,则:
(1)若没有推力F,滑块静止于圆柱体上时,挡板对滑块的弹力大小
(2)存在推力F时,F是否为恒力,若是求其大小;若不是,求其大小与时间的关系
(3)存在推力F时,带动圆柱体匀速转动的电动机输出功率与时间关系
(10分)如图,倾角为θ的斜面上只有AB段粗糙,其余部分都光滑,AB段长为3L.有一个质量分布均匀、长为L条状滑块,下端距A为2L,将它由静止释放,当滑块下端运动到A下面距A为L/2时滑块运动的速度达到最大。
(1)求滑块与粗糙斜面的动摩擦因数μ;
(2)将滑块下端移到与A点重合处,并以初速度v0释放,要使滑块能完全通过B点,试求v0的最小值。
(9分)利用如图(a)所示电路,可以测量电源的电动势和内阻,所用的实验器材有:
待测电源,电阻箱R(最大阻值999.9Ω),电阻R0(阻值为3.0Ω),电阻R1(阻值为3.0Ω),电流表(量程为200mA,内阻为RA=6.0Ω),开关S.
实验步骤如下:
①将电阻箱阻值调到最大,闭合开关S;
②多次调节电阻箱,记下电流表的示数I和电阻箱相应的阻值R;
③以1/I为纵坐标,R为横坐标,作出1/I——R图线(用直线拟合);
④求出直线的斜率k和在纵轴上的截距b
回答下列问题:
(1)分别用E和r表示电源的电动势和内阻,则1/I和R的关系式为___;
(2)实验得到的部分数据如下表所示,其中电阻R=3.0Ω时电流表的示数如图(b)所示,读出数据,完成下表。答:①___,②___.
R/Ω | 1.0 | 2.0 | 3.0 | 4.0 | 5.0[ | 6.0 | 7.0 |
I/A | 0.143 | 0.125 | ① | 0.100 | 0.091 | 0.084 | 0.077 |
I−1/A−1 | 6.99 | 8.00 | ② | 10.0 | 11.0 | 11.9 | 13.0 |
(3)在图(c)坐标纸上将所缺数据点补充完整并作图,根据图线求得斜率k=___A−1Ω−1,截距b=___A−1;
(4)根据图线求得电源电动势E=___V,内阻r=___Ω.