(17分)在某项娱乐活动中,要求参与者通过一光滑的斜面将质量为m的物块送上高处的水平传送带后运送到网兜内.斜面长度为l,倾角为θ=30°,传送带距地面高度为l,传送带的长度为3l,传送带表面的动摩擦因数μ=0.5,传送带一直以速度顺时针运动.当某参与者第一次试操作时瞬间给予小物块一初速度只能将物块刚好送到斜面顶端;第二次调整初速度,恰好让物块水平冲上传送带并成功到达网兜.求:
(1)第一次小物块获得的初速度v1;
(2)第二次小物块滑上传送带的速度v2和传送带距斜面的水平距离s;
(3)第二次小物块通过传送带过程中摩擦力对物块所做功以及摩擦产生的热量.
(17分)一根轻质细绳绕过轻质定滑轮,右边穿上质量M=3kg的物块A,左边穿过长L=2m的固定细管后下端系着质量m=1kg的小物块B,物块B距细管下端h=0.4m处,已知物块B通过细管时与管内壁间的滑动摩擦力F1=10N,当绳中拉力超过F2=18N时物块A与绳之间就会出现相对滑动,且绳与A间的摩擦力恒为18N.开始时A、B均静止,绳处于拉直状态,同时释放A和B.不计滑轮与轴之间的摩擦,g取10m/s2.求:
(1)刚释放A、B时绳中的拉力;
(2)B在管中上升的高度及B上升过程中A、B组成的系统损失的机械能;
(3)若其他条件不变,增大A的质量,试通过计算说明B能否穿越细管.
(16分)如图所示,已知倾角为θ=45°、高为h的斜面固定在水平地面上.一小球从高为H(h<H<)处自由下落,与斜面做无能量损失的碰撞后水平抛出.小球自由下落的落点距斜面左侧的水平距离x满足一定条件时,小球能直接落到水平地面上.
(1)求小球落到地面上的速度大小;
(2)求要使小球做平抛运动后能直接落到水平地面上,x应满足的条件;
(3)在满足(2)的条件下,求小球运动的最长时间.
(10分)如图甲所示的装置叫做阿特伍德机,是英国数学家和物理学家阿特伍德(G•Atwood 1746-1807)创制的一种著名力学实验装置,用来研究匀变速直线运动的规律.某同学对该装置加以改进后用来验证机械能守恒定律,如图乙所示.
(1)实验时,该同学进行了如下步骤:
①将质量均为M(A的含挡光片、B的含挂钩)的重物用绳连接后,跨放在定滑轮上,处于静止状态,测量出 (填“A的上表面”、 “A的下表面”或“挡光片中心”)到光电门中心的竖直距离h.
②在B的下端挂上质量为m的物块C,让系统(重物A、B以及物块C)中的物体由静止开始运动,光电门记录挡光片挡光的时间为.
③测出挡光片的宽度d,计算有关物理量,验证机械能守恒定律.
(2)如果系统(重物A、B以及物块C)的机械能守恒,应满足的关系式为 (已知重力加速度为g)
(3)引起该实验系统误差的原因有 (写一条即可).
(4)验证实验结束后,该同学突发奇想:如果系统(重物A、B以及物块C)的机械能守恒,不断增大物块C的质量m,重物B的加速度a也将不断增大,那么a与m之间有怎样的定量关系?a随m增大会趋于一个什么值?请你帮该同学解决:
①写出a与m之间的关系式: (还要用到M和g);
②a的值会趋于 .
(10分)某同学用如图甲所示的实验装置来“探究a与F、m之间的定量关系”.
(1)实验时,必须先平衡小车与木板之间的摩擦力.该同学是这样操作的:如图乙,将小车静止地放在水平长木板上,并连着已穿过打点计时器的纸带,调整木板右端的高度,接通电源,用手轻拨小车,让打点计时器在纸带上打出一系列________________的点,说明小车在做________________运动.
(2)如果该同学先如(1)中的操作,平衡了摩擦力.以砂和砂桶的重力为F,在小车质量M保持不变情况下,不断往桶里加砂,砂的质量最终达到,测小车加速度a,作a-F的图像.下列图线正确的是 .
(3)设纸带上计数点的间距为S1和S2.如图为用米尺测量某一纸带上的S1、S2的情况,从图中可读出S1=3.10cm, S2=____cm,已知打点计时器的频率为50Hz,由此求得加速度的大小a=___m/s2.
如图所示,水平转台上有一个质量为m的物块,用长为L的细绳将物块连接在转轴上,细线与竖直转轴的夹角为θ角,此时绳中张力为零,物块与转台间动摩擦因数为μ(μ<tanθ),最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则:
A.至绳中出现拉力时,转台对物块做的功为
B.至绳中出现拉力时,转台对物块做的功为
C.至转台对物块支持力为零时,转台对物块做的功为
D.设法使物体的角速度增大到时,物块机械能增量为