质量为m的物体静止在光滑水平面上,从t=0时刻开始受到水平力的作用.力的大小F与时间t的关系如图所示,力的方向保持不变,则( )
A.3t0时刻的瞬时功率为
B.在t=0到3t0这段时间内,水平力对物体做的功为
C.在t=0到3t0这段时间内,水平力的平均功率为
D.在t=0到3t0这段时间内,水平力的平均功率为
假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g0,在赤道的大小为g,地球自转的周期为T,引力常量为G.地球的密度为( )
A. B. C. D.
如图所示,一小球从一半圆轨道左端A点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B点.O为半圆轨道圆心,半圆轨道半径为R,OB与水平方向夹角为60°,重力加速度为g,则小球抛出时的初速度为( )
A. B. C. D.
如图所示,一个固定在水平面上的光滑物块,其左侧面是斜面AB,右侧面是曲面AC,已知AB和AC的长度相同.两个小球p、q同时从A点分别沿AB和AC由静止开始下滑,比较它们到达水平面所用的时间( )
A.p小球先到
B.q小球先到
C.两小球同时到
D.无法确定
如图所示,装置BO′O可绕竖直轴O′O转动,可视为质点的小球A与两细线连接后分别系于B、C两点,装置静止时细线AB水平,细线AC与竖直方向的夹角θ=37°。已知小球的质量m=1 kg,细线AC长l=1m,B点距C点的水平和竖直距离相等。(重力加速度g取10 m/s2,sin 37°=,cos 37°=)
(1)若装置匀速转动的角速度为ω1时,细线AB上的张力为0而细线AC与竖直方向的夹角仍为37°,求角速度ω1的大小;
(2)若装置匀速转动的角速度ω2=rad/s,求细线AC与竖直方向的夹角。
如图是利用传送带装运煤块的示意图.其中传送带足够长,倾角θ=37°,煤块与传送 带间的动摩擦因数μ=0.8,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度H=1.8 m,与运煤车车厢中心的水平距离x=1.2 m.现在传送带底端由静止释放一些煤块(可视为质点),煤块在传送带的作用下先做匀加速直线运动,后与传送带一起做匀速运动,到达主动轮时随轮一起匀速转动.要使煤块在轮的最高点水平抛出并落在车厢中心,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8,求:
(1)传送带匀速运动的速度v及主动轮和从动轮的半径R;
(2)煤块在传送带上由静止开始加速至与传送带速度相同所经过的时间t.