如图所示,水平传送带以恒定速度v向右运动.将质量为m的物体Q轻轻放在水平传送带的左端A处,经过t秒后,Q的速度也变为v,再经t秒物体Q到达传送带的右端B处,则( )
A.前t秒内物体做匀加速运动,后t秒内物体做匀减速运动
B.前t秒内Q的位移与后t秒内Q的位移大小之比为1:3
C.Q由传送带左端运动到右端的平均功率为
D.Q由传送带左端运动到右端的平均速度为v
为了验证拉住月球使它围绕地球运动的力与拉着苹果下落的力以及地球、众行星与太阳之间的作用力是同一性质的力,同样遵从平方反比定律,牛顿进行了著名的“月地检验”.已知月地之间的距离为60R(R为地球半径),月球围绕地球公转的周期为T,引力常量为G.则下列说法中正确的是( )
A.物体在月球轨道上受到的地球引力是其在地面附近受到的地球引力的
B.由题中信息可以计算出地球的密度为
C.物体在月球轨道上绕地球公转的向心加速度是其在地面附近自由下落时的加速度的
D.由题中信息可以计算出月球绕地球公转的线速度为
(12分)如图所示,以A.B和C.D为端点的半径为R=0.9m的两半圆形光滑轨道固定于竖直平面内,A.D之间放一水平传送带Ⅰ,B.C之间放一水平传送带Ⅱ,传送带Ⅰ以V1=8m/s的速度沿图示方向匀速运动,传送带Ⅱ以V2=10m/s的速度沿图示方向匀速运动。现将质量为m=2kg的物块从传送带Ⅰ的右端由静止放上传送带,物块运动第一次到A时恰好能沿半圆轨道滑下。物块与传送带Ⅱ间的动摩擦因数为μ2=0.35,不计物块的大小及传送带与半圆轨道间的间隙,重力加速度g=10m/s2,已知A.D端之间的距离为L=1.0m。求:
(1)物块与传送带Ⅰ间的动摩擦因数μ1;
(2)物块第1次回到D点时的速度;
(3)物块第几次回到D点时的速度达到最大,最大速度为多大.
(10分)如甲图所示,水平光滑地面上用两颗钉子(质量忽略不计)固定停放着一辆质量为M=2kg的小车,小车的四分之一圆弧轨道是光滑的,半径为R=0.6m,在最低点B与水平轨道BC相切,视为质点的质量为m=1kg的物块从A点正上方距A点高为h=1.2m处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行恰好停在轨道末端C。现去掉钉子(水平面依然光滑未被破坏)不固定小车,而让其左侧靠在竖直墙壁上,该物块仍从原高度处无初速下落,如乙图所示。不考虑空气阻力和物块落入圆弧轨道时的能量损失,已知物块与水平轨道BC间的动摩擦因数为μ=0.1,重力加速度g取10 m/s2,求:
(1)水平轨道BC长度;
(2)小车不固定时物块再次与小车相对静止时距小车B点的距离;
(3)两种情况下由于摩擦系统产生的热量之比.
(10分)如图所示,长为L的细线一端固定在O点,另一端拴一质量为m的小球,已知小球在最高点A受到绳子的拉力刚好等于小球自身的重力,O点到水平地面的距离Soc =H且 H>L,重力加速度为g,求:
(1)小球通过最高点A时的速度VA的大小;
(2)小球通过最低点B时,细线对小球的拉力;
(3)小球运动到A点或B点时细线断裂,小球落到地面对到C点的距离若相等,则L和H应满足什么关系.
(8分)汽车发动机的额定功率为30KW,质量为1000kg,当汽车在水平路面上行驶时受到阻力为车重的0.1倍(),求:
(1)汽车在路面上能达到的最大速度;
(2)若汽车以额定功率启动,当汽车速度为5m/s时的加速度;
(3)若汽车从静止开始保持2m/s2的加速度作匀加速直线运动,达到额定输出功率后,汽车保持功率不变又加速行驶了200m,直到获得最大速度后才匀速行驶。求汽车从静止到获得最大行驶速度所用的总时间.