如图所示,由半径为R的光滑圆周和倾角为450的光滑斜面组成的轨道固定在竖直平面内,斜面和圆周之间由小圆弧平滑连接。一小球恰能过最高点,并始终贴着轨内侧顺时针转动。则小球通过斜面的时间为(重力加速度为g)
A. B. C. D.
如图所示,弹簧秤外壳质量为M,弹簧及挂钩的质量忽略不计,挂钩吊一重物质量为m,现用一方向竖直向上的外力F拉着弹簧秤,使其向上做匀加速直线运动,则弹簧秤对物体的拉力为
A.mg B. C. D.
关于环绕地球运动的卫星,下列说法正确的是
A.分别沿圆轨道和椭圆轨道运行的两颗卫星.可能具有相同的周期
B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速度
C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同
D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合
(19分)如图所示,天花板上有固定转轴O,长为L的轻杆一端可绕转轴O在竖直平面内自由转动,另一端固定一质量为M的小球。一根不可伸长的足够长轻绳绕过定滑轮A,一端与小球相连,另一端挂着质量为m1的钩码,定滑轮A的位置可以沿OA连线方向调整。小球、钩码均可看作质点,不计一切摩擦,g取10m/s2。
(1)若将OA间距调整为L,则当轻杆与水平方向夹角为30º时小球恰能保持静止状态,求小球的质量M与钩码的质量m1之比;
(2)若在轻绳下端改挂质量为m2的钩码,且M:m2=4:1,并将OA间距调整为L,然后将轻杆从水平位置由静止开始释放,求小球与钩码速度大小相等时轻杆与水平方向的夹角θ;
(3)在(2)的情况下,测得杆长L=2.175m,仍将轻杆从水平位置由静止开始释放,当轻杆转至竖直位置时,小球突然与杆和绳脱离连接而向左水平飞出,求当钩码上升到最高点时,小球与O点的水平距离。
(17分)成都七中某课外兴趣小组同学为了研究过山车的原理,提出了下列设想:取一个与水平方向夹角为37°、长L=2.0m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。其中AB与BC轨道以微小圆弧相接,如图所示。一个质量m=1kg的小物块以初速度v0=4.0m/s,从某一高处水平抛出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下。已知物块与倾斜轨道的动摩擦因数μ=0.50 (g取10m/s,sin37°=0.60 ,cos37°=0.80)求:
(1)小物块的抛出点和A点的高度差;
(2)若小物块刚好能在竖直圆弧轨道上做完整圆周运动,求小物块在D点对圆弧轨道的压力;
(3)为了让小物块不脱离轨道,则竖直圆轨道的半径应该满足什么条件。
(12分) 已知O、A、B、C为同一直线上的四点,AB间的距离为l1,BC间的距离为l2,一物体自O点由静止出发,沿此直线做匀变速运动,依次经过A、B、C三点,已知物体通过AB段与BC段所用的时间相等,求O与A的距离。