边长为L=0.2m的正方形区域内有垂直纸面向里的匀强磁场,穿过该区域磁场的磁感应强度随时间变化的图象如图乙所示,将边长为,匝数n=100,线圈电阻r=1.0Ω的正方形线圈abcd放入磁场,线圈所在平面与磁感线垂直,如图甲所示.求:
(1)回路中感应电流的方向及磁感应强度的变化率;
(2)在0~4.0s内通过线圈的电荷量q;
(3)0~6.0s内整个闭合电路中产生的热量.
如图所示,在半径为R=的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度B,圆形区域右侧有一竖直感光板,从圆弧顶点P以速率v0的带正电粒子平行于纸面进入磁场,已知粒子的质量为m,电量为q,粒子重力不计.
(1)若粒子对准圆心射入,求它在磁场中运动的时间;
(2)若粒子对准圆心射入,且速率为v0,求它打到感光板上时速度的垂直分量;
(3)若粒子以速度v0从P点以任意角入射,试证明它离开磁场后均垂直打在感光板上.
回旋加速器是用于加速带电粒子流,使之获得很大动能的仪器,其核心部分是两个D形金属扁盒,两盒分别和一高频交流电源两极相接,以便在盒间狭缝中形成匀强电场,使粒子每穿过狭缝都得到加速;两盒放在匀强磁场中,磁场方向垂直于盒底面.离子源置于盒的圆心,释放出电量为q、质量为m的离子,离子最大回旋半径为Rm,磁场强度为B,其运动轨迹如图所示.求:
(1)离子离开加速器时速度多大?
(2)设离子初速度为零,两D形盒间电场的电势差为U,盒间距离为d,求加速到上述能量所需时间(粒子在缝中时间不忽略).
在“描绘小灯泡的伏安特性曲线”的实验中,现除了有一个标有“5V,2.5W”的小灯泡、导线和开关外,还有:
A.直流电源(电动势约为5V,内阻可不计)
B.直流电流表(量程0〜3A,内阻约为0.1Ω)
C.直流电流表(量程0〜600mA,内阻约为5Ω)
D.直流电压表(量程0〜15V,内阻约为15kΩ)
E.直流电压表(量程0〜5V,内阻约为10kΩ)
F.滑动变阻器(最大阻值10Ω,允许通过的最大电流为2A)
G.滑动变阻器(最大阻值1kΩ,允许通过的最大电流为0.5A)实验要求小灯泡两端的电压从零开始变化并能测多组数据.
(1)实验中电流表应选用 ,电压表应选用 ,滑动变阻器应选用 (均用序号字母表示).
(2)请按要求将图1中所示的器材连成实验电路.
(3)某同学通过实验正确作出的小灯泡的伏安特性曲线如图2所示.现把实验中使用的小灯泡接到如图3所示的电路中,其中电源电动势E=6V,内阻r=1Ω,定值电阻R=9Ω,此时灯泡的实际功率为 W.(结果保留两位有效数字)
用螺旋测微器测圆柱体的直径时,示数如图所示,此示数为 mm.用游标为50分度的卡尺(测量值可准确到0.02mm)测定某圆柱的直径时,卡尺上的示数如图所示,可读出圆柱的直径为 mm.
均匀导线制成的正方形闭合线框abcd,线框的匝数为n、边长为L、总电阻为R、总质量为m,将其置于磁感应强度为B的水平匀强磁场上方某高度处,如图所示,释放线框,让线框由静止自由下落,线框平面保持与磁场垂直,cd边始终与水平的磁场边界平行,已知cd边刚进入磁场时,线框加速度大小恰好为,重力加速度为g,则线框cd边离磁场边界的高度h可能为( )
A. B.
C. D.