某游戏装置放在竖直平面内,如图所示,装置由粗糙抛物线形轨道AB和光滑的圆弧轨道BCD构成,控制弹射器可将穿在轨道上的小球以不同的水平初速度由A点射入,最后小球将由圆轨道的最高点D水平抛出,落入卡槽中得分,圆弧半径为R,O′为圆弧的圆心,C为圆弧轨道最低点,抛物线轨道上A点在坐标轴的原点O上,轨道与圆弧相切于B点,抛物线轨道方程为y=ax2(0<a<),∠BO′C=θ,x轴恰好将半径O′D分成相等的两半,交点为P,x轴与圆弧交于Q点,则:
(1)将小球以某一初速度水平由A点射入轨道,小球沿轨道运动到与A等高处Q,速度减为0,试求小球运动到B点的速度;
(2)由(1)得到的B点的速度,能否求出小球在A点射入的速度,如果能请求出v0,不能,请说明理由(3)试求在多次弹射小球的过程中,机械能损失最小的一次,小球在最高点D对轨道的作用力与最低点C对轨道的作用力的比值.
如图甲所示,质量m=2kg的物块在平行斜面向上的拉力F作用下从静止开始沿斜面向上运动,t=0.5s时撤去拉力,利用速度传感器得到其速度随时间的变化关系图象(v-t图象)如图乙所示,g取l0m/s2,求:
(1)2s内物块的位移大小s和通过的路程L;
(2)沿斜面向上运动两个阶段加速度大小a1、a2和拉力大小F.
如图甲所示的装置叫做阿特伍德机,是英国数学家和物理学家阿特伍德创制的一种著名力学实验装置,用来研究匀变速直线运动的规律.某同学对该装置加以改进后用来验证机械能守恒定律,如图乙所示.
(1)实验时,该同学进行了如下操作:
①将质量均为M(A的含挡光片、B的含挂钩)的重物用绳连接后,跨放在定滑轮上,处于静止状态.测量出______________(填“A的上表面”、“A的下表面”或“挡光片中心”)到光电门中心的竖直距离h.
②在B的下端挂上质量为m的物块C,让系统(重物A、B以及物块C)中的物体由静止开始运动,光电门记录挡光片挡光的时间为Δt.
③测出挡光片的宽度d,计算有关物理量,验证机械能守恒定律.
(2)如果系统(重物A、B以及物块C)的机械能守恒,应满足的关系式为________ (已知重力加速度为g).
(3)引起该实验系统误差的原因有___________________________(写一条即可).
(4)验证实验结束后,该同学突发奇想:如果系统(重物A、B以及物块C)的机械能守恒,不断增大物块C的质量m,重物B的加速度a也将不断增大,那么a与m之间有怎样的定量关系?a随m增大会趋于一个什么值?请你帮该同学解决:
①写出a与m之间的关系式:__________________________(还要用到M和g).
②a的值会趋于________.
如图甲示,用铁架台、弹簧和多个已知质量且质量相等的钩码,探究在弹性限度内弹簧弹力与弹簧伸长长度的关系实验.
(1)实验中还需要的测量工具有:_________________.
(2)如图乙示,根据实验数据绘图,纵轴是钩码质量m,横轴是弹簧的形变量x.由图可知:图线不通过原点的原因是由于 ;弹簧的劲度系数k=______N/m(计算结果保留2位有效数字,重力加速度g取9.8m/s2);
(3)如图丙示,实验中用两根不同的弹簧a和b,画出弹簧弹力F与弹簧长度L的F—L图像.下列正确的是
A.a的原长比b的长
B.a的劲度系数比b的大
C.a的劲度系数比b的小
D.弹力与弹簧长度成正比
如图所示,质量为m的小球由轻绳a、b分别系于一轻质木架上的A点和C点.当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时轻杆停止转动,若绳a、b的长分别为la、lb,且la>lb2 则
A.绳b烧断前,绳a的拉力等于mg,绳b的拉力等于mω2lb
B.绳b烧断瞬间,绳a的拉力突然增大
C.绳b烧断后,小球在垂直于平面ABC的竖直平面内摆动
D.绳b烧断后,小球仍在水平面内做匀速圆周运动
太空中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设这三个星体的质量均为M,并设两种系统的运动周期相同,则
A.直线三星系统中甲星和丙星的线速度相同
B.此三星系统的运动周期为
C.三角形三星系统中星体间的距离为
D.三角形三星系统的线速度大小为