北京奥运火炬成功登上珠峰,如图所示是火炬手攀登珠峰的线路图,据此图判断下列说法正确的是( )
A.由起点到终点火炬手所走线路的总长度等于位移
B.在计算登山运动的速度时可以把火炬手当成质点
C.线路总长度与火炬所走时间的比等于登山者的平均速度
D.珠峰顶的重力加速度要大于9.8m/s2
唐代大诗人李白的“飞流直下三千尺,疑是银河落九天”,描述了庐山瀑布的美景,如果三尺为1 m,则水落到地面的速度约为(不计阻力视为自由落体)( )
A.140m/s B.300m/s C.200m/s D.100m/s
如图,水平地面上方有绝缘弹性竖直档板,板高h=9m,与板等高处有一水平放置的篮筐,筐口的中心离挡板s=3m.板的左侧以及板上端与筐口的连线上方存在匀强磁场和匀强电场,磁场方向垂直纸面向里,磁感应强度B=1T;质量、电量、视为质点的带电小球从挡板最下端,以某一速度水平射入场中做匀速圆周运动,若与档板相碰就以原速率弹回,且碰撞时间不计,碰撞时电量不变,小球最后都能从筐口的中心处落入筐中(不考虑与地面碰撞后反弹入筐情况),,求:
(1)电场强度的大小与方向;
(2)小球从出发到落入筐中的运动时间的可能取值(计算结果可以用分数和保留π值表示)
如图所示,通过水平绝缘传送带输送完全相同的正方形单匝铜线框,为了检测出个别未闭合的不合格线框,让线框随传送带通过一固定匀强磁场区域(磁场方向垂直于传送带平面向下),观察线框进入磁场后是否相对传送带滑动就能够检测出未闭合的不合格线框。已知磁场边界MN、PQ与传送带运动方向垂直,MN与PQ间的距离为d,磁场的磁感应强度为B。各线框质量均为m,电阻均为R,边长均为L(L<d);传送带以恒定速度v0向右运动,线框与传送带间的动摩擦因数为μ,重力加速度为g。线框在进入磁场前与传送带的速度相同,且右侧边平行于MN减速进入磁场,当闭合线框的右侧边经过边界PQ时又恰好与传送带的速度相同。设传送带足够长,且在传送带上始终保持右侧边平行于磁场边界。对于闭合线框,求:
(1)线框的右侧边刚进入磁场时所受安培力的大小;
(2)线框在进入磁场的过程中运动加速度的最大值以及速度的最小值;
(3)从线框右侧边刚进入磁场到穿出磁场后又相对传送带静止的过程中,传送带对该闭合铜线框做的功。
如图所示,两条平行的金属导轨相距L=1 m,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN和PQ的质量均为m=0.2 kg,电阻分别为RMN=1 Ω和RPQ=2 Ω.MN置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F1的作用下由静止开始以a=1 m/s2的加速度向右做匀加速直线运动,PQ则在平行于斜面方向的力F2作用下保持静止状态.t=3 s时,PQ棒消耗的电功率为8 W,不计导轨的电阻,水平导轨足够长,MN始终在水平导轨上运动.求:
(1)磁感应强度B的大小;
(2)0~3 s时间内通过MN棒的电荷量;
(3)求t=6 s时F2的大小和方向;
(4)若改变F1的作用规律,使MN棒的运动速度v与位移x满足关系:v=0.4x,PQ棒仍然静止在倾斜轨道上.求MN棒从静止开始到x=5 m的过程中,系统产生的焦耳量.
如图所示,等腰直角三角形ACD的直角边长为2a,P为AC边的中点,Q为CD边上的一点,DQ=a.在△ACD区域内,既有磁感应强度大小为B、方向垂直纸面向里的匀强磁场,又有电场强度大小为E的匀强电场,一带正电的粒子自P点沿平行于AD的直线通过△ACD区域,不计粒子的重力.
(1)求电场强度的方向和粒子进入场区的速度大小v0;
(2)若仅撤去电场,粒子仍以原速度自P点射入磁场,从Q点射出磁场,求粒子的比荷;