酒后驾驶会导致许多安全隐患,是因为驾驶员的反应时间变长。反应时间是指驾驶员从发现情况到采取制动的时间。下表中“思考距离”是指驾驶员从发现情况到采取制动的时间内汽车行驶的距离;“制动距离”是指驾驶员从发现情况到汽车停止行驶的距离(假设汽车制动时的加速度大小都相同)。
速度(m/s) | 思考距离/m | 制动距离/m | ||
正常 | 酒后 | 正常 | 酒后 | |
15 | 7.5 | 15.0 | 22.5 | 30.0 |
20 | 10.0 | 20.0 | 36.7 | 46.7 |
25 | 12.5 | 25.0 | 54.2 | 66.7 |
分析上表可知,下列说法不正确的是
A.驾驶员正常情况下反应时间为0.5 s
B.驾驶员酒后反应时间比正常情况下多0.5 s
C.驾驶员采取制动措施后汽车加速度大小为3.75 m/s2
D.若汽车以25 m/s的速度行驶时,发现前方60 m处有险情,酒后驾驶不能安全停车
如图所示为缓慢关门时(图中箭头方向)门锁的示意图,锁舌尖角为37°,此时弹簧弹力为24 N,锁舌表面较光滑,摩擦不计(sin37°=0.6,cos37°=0.8),则下列说法正确的是
A.关门时锁壳碰锁舌的弹力逐渐减小
B.关门时锁壳碰锁舌的弹力保持不变
C.此时锁壳碰锁舌的弹力为40 N
D.此时锁壳碰锁舌的弹力为30 N
在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步.关于科学家和他们的贡献,下列说法正确的是
A.古希腊学者亚里士多德认为物体下落的快慢由它们的重量决定,伽利略在他的《两
种新科学的对话》中利用逻辑推断,证实了这种观点
B.德国天文学家幵普勒对他导师第谷观测的行星数据进行了多年研究,得出了万有引 力定律
C.英国物理学家卡文迪许利用“卡文迪许扭秤”首先较准确的测定了静电力常量
D.奥斯特发现了电流的磁效应后,法拉第探究了用磁场获取电流的方法,并取得了成功
如图所示,水平绝缘光滑的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)PB间的距离xpB
(3)D点到B点的距离xDB.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.(结果保留3位有效数字)
如图所示的电路中,电源的电动势E=9V,内阻r=1Ω;电阻R1=10Ω,R2=10Ω,R3=30Ω,R4=40Ω;电容器的电容C=100μF,电容器原来不带电,求:
(1)开关S未接通时电源的电流I;
(2)接通开关S后流过R4的总电量Q.
如图所示,一个质量为m=2.0×10﹣11kg,电荷量q=+1.0×10﹣5C的带电微粒(重力忽略不计),从静止开始经U=100V电压加速后,水平进入两平行金属板间的偏转电场中.金属板长L=20cm,两板间距d=10cm.求:
(1)微粒进入偏转电场时的速度v是多大?
(2)若微粒射出电场过程的偏转角为θ=30°,则两金属板间的电压U2是多大?