物体甲的x﹣t图象和物体乙的v﹣t图象分别如图所示,则这两物体的运动情况是( )
A.甲在整个t=6s时间内运动方向一直不变,它通过的总位移大小为6m
B.甲在整个t=6s时间内有来回运动,它通过的总位移为零
C.乙在整个t=6s时间内有来回运动,它通过的总位移为零
D.乙在整个t=6s时间内运动方向一直不变,它通过的总位移大小为4m
下列有关质点的说法中正确的是( )
A.只有质量和体积都极小的物体才能视为质点
B.研究一列火车过铁路桥经历的时间时,可以把火车视为质点
C.研究自行车的运动时,因为车轮在不停地转动,所以在任何情况下都不能把自行车作为质点
D.虽然地球很大,还在不停地自转,但是在研究地球的公转时,仍然可以把它视为质点
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴向右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).
已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场.上述m、q、l、t0、B为已知量.(不考虑粒子间相互影响及返回板间的情况)
(1)求电压U的大小.
(2)求t0时进入两板间的带电粒子在磁场中做圆周运动的半径.
(3)何时刻进入两极板的带电粒子在磁场中的运动时间最短?求此最短时间.
如图甲所示,半径R=1m,圆心角等于143°的竖直圆弧形光滑轨道,与斜面相切于B处,圆弧形轨道的最高点为M,斜面倾角θ=37°,t=0时刻有一物块沿斜面上滑,其在斜面上运动的速度变化规律如图乙所示.若物块恰能到达M点,取g=10m/s2,sin37°=0.6,cos37°=0.8,求:
(1)物块经过B点时的速度vB;
(2)物块与斜面间的动摩擦因数μ;
(3)AB间的距离xAB.
总质量为80kg的跳伞运动员从离地500m的直升机上跳下,经过2s拉开绳索开启降落伞,如图所示是跳伞过程中的v﹣t图,试根据图象求:(g取10m/s2)
(1)t=1s时运动员的加速度和所受阻力的大小.
(2)估算14s内运动员下落的高度
(3)估算运动员从飞机上跳下到着地的总时间.
用如图1实验装置验证m1、m2组成的系统机械能守恒.m2从高处由静止开始下落,m1上拖着的纸带打出一系列的点,对纸带上的点迹进行测量,即可验证机械能守恒定律.图2给出的是实验中获取的一条纸带:0是打下的第一个点,每相邻两计数点间还有4个点(图中未标出),计数点间的距离如图2所示.已知m1=50g、m2=150g,则(g取10m/s2,结果保留两位有效数字)
(1)在纸带上打下记数点5时的速度v= m/s;
(2)在打点0~5过程中系统动能的增量△EK= J,系统势能的减少量△EP= J,由此得出的结论是 ;
(3)若某同学作出v2﹣h图象如图3,则当地的实际重力加速度g= m/s2.