下列关于物理学史和物理学方法的叙述中,正确的是 ( )
A. 牛顿运用理想实验的方法得出“力不是维持物体运动的原因”;
B. 安培发现了电流周围存在磁场,并总结出电流周围磁场方向的判定方法——右手螺旋定则,也称安培定则;
C. 在定义电场强度时应用了比值法,因而电场强度和电场力成正比,与试探电荷的电荷量成反比;
D. 在利用速度—时间图像推导匀变速直线运动位移公式时应用的是微元法。
如图所示,在水平桌面上有两个静止的物块A和B(均可视为质点),质量均为m=0.2kg,桌子处于方向斜向右上方与水平方向成45°角、电场强度E=10N/C的匀强电场中。物块A带正电,电荷量q=0.1C,A与桌面的动摩擦因数μ=0.2,物块B是绝缘体,不带电,桌面离地面的高度h=5m,开始时,A、B相距L=2m,B在桌子的边缘,在电场力作用下,A开始向右运动,A、B碰后交换速度,A、B间无电荷转移,不计空气阻力,g=10 m/s2,求:
(1)A经过多长时间与B相碰;
(2)A、B落点之间的水平距离。
如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点。水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.8 m的圆环剪去了左上角的1350的圆弧,MN为其竖直直径,P点到桌面的竖直距离也是R。用质量m1=0.4 kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点。用同种材料、质量为m2=0.2 kg的物块将弹簧缓慢压缩到C点释放,物块过B点后其位移与时间的关系为x=6t-2t2,物块飞离桌面后由P点沿切线落入圆轨道,不计空气阻力,g=10 m/s2,求:
(1)物块运动到P点速度的大小和方向。
(2)判断m2能否沿圆轨道到达M点。
(3)释放后m2运动过程中克服摩擦力做的功。
宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用,设每个星体的质量均为m,四颗星稳定地分布在边长为a的正方形的四个顶点上,已知这四颗星均围绕正方形对角线的交点做匀速圆周运动,引力常量为G,试求:
(1)若实验观测得到星体的半径为R,求星体表面的重力加速度;
(2)求星体做匀速圆周运动的周期。
如图所示,一粗糙斜面的倾角θ=37°,物体与斜面间的动摩擦因素μ=0.5,一质量为m=5kg的物块在一水平力F的作用下静止在斜面上,g取10 m/s2,最大静摩擦力可认为等于滑动摩擦力,求:
(1)要使物体恰能静止在斜面上(即与斜面没有相对滑动的趋势),F应为多大;
(2)要使物体静止在斜面上,F应在什么范围内。
用如图所示的实验装置验证m1、m2组成的系统机械能守恒,m2从高处由静止开始下落,在m1拖着的纸带上打出一系列的点,对纸带上的点迹进行测量,即可验证机械能守恒定律。下图给出的是实验中获取的一条纸带:0是打下的第一个点,每相邻两计数点间还有4个点未标出,计数点间的距离如图所示。已知m1=50g,m2=150 g,g取10 m/s2,交流电源的频率为50 Hz,不考虑各处摩擦力的影响,结果保留两位有效数字。
(1)在纸带上打下计数点5时m2的速度v=________m/s;
(2)在打点0~5过程中系统动能的增量ΔEk=________J,系统重力势能的减少量ΔEp=________J;
(3)若某同学作出v2-h图象如图所示,则该同学测得的重力加速度g=________m/s2。