牛顿提出太阳和行星间的引力后,为证明地球表面的重力和地球对月球的引力是同一种力,也遵循这个规律,他进行了“月-地检验”.已知月球的轨道半径约为地球半径的60倍,“月-地检验”是计算月球公转的
A.周期是地球自转周期的倍
B.向心加速度是自由落体加速度的倍
C.线速度是地球自转地表线速度的602倍
D.角速度是地球自转地表角速度的602倍
一只电阻分别通过四种不同形式的电流,电流随时间变化的情况如下图所示,在相同时间内电阻产生热量最大的是
如图甲所示,在y≥0的区域内有垂直纸面向里的匀强磁场,其磁感应强度B随时间t变化的规律如图乙所示;与x轴平行的虚线MN下方有沿+y方向的匀强电场,电场强度E=N/C。在y轴上放置一足够大的挡板。t=0时刻,一个带正电粒子从P点以v=2×104m/s的速度沿+x方向射入磁场。已知电场边界MN到x轴的距离为m,P点到坐标原点O的距离为1.1m,粒子的比荷C/kg,不计粒子的重力。求粒子:
(1)在磁场中运动时距x轴的最大距离;
(2)连续两次通过电场边界MN所需的时间;
(3)最终打在挡板上的位置到坐标原点O的距离。
如图甲所示,滑块与足够长的木板叠放在光滑水平面上,开始时均处于静止状态。作用于滑块的水平力F随时间t变化图象如图乙所示,t=2.0s时撤去力F,最终滑块与木板间无相对运动。已知滑块质量m=2kg,木板质量M = 1kg,滑块与木板间的动摩擦因数μ=0.2,取g=10m/s2。求:
(1)t=0.5s时滑块的速度大小;
(2)0~2.0s内木板的位移大小;
(3)整个过程中因摩擦而产生的热量。
某兴趣小组用电流传感器测量某磁场的磁感应强度。实验装置如图甲,不计电阻的足够长光滑金属导轨竖直放置在匀强磁场中,导轨间距为d,其平面与磁场方向垂直。电流传感器与阻值为R的电阻串联接在导轨上端。质量为m、有效阻值为r的导体棒AB由静止释放沿导轨下滑,该过程中电流传感器测得电流随时间变化规律如图乙所示,电流最大值为Im。棒下滑过程中与导轨保持垂直且良好接触,不计电流传感器内阻及空气阻力,重力加速度为g。
(1)求该磁场磁感应强度大小;
(2)求在t1时刻棒AB的速度大小;
(3)在0~t1时间内棒AB下降的高度为h,求此过程电阻R产生的电热。
光滑水平面上质量为1kg的小球A以2.0m/s的速度与同向运动的速度为1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动。求:
①碰后A球的速度;
②碰撞过程中A、B系统损失的机械能。