如图所示,一个质量均匀分布的星球,绕其中心轴PQ自转,AB与PQ是互相垂直的直径。星球在A点的重力加速度是P点的90%,星球自转的周期为T,万有引力常量为G,则星球的密度为
A. B. C. D.
如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5m,物块A以V0=6m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动.P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为L=0.1m.物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1kg(重力加速度g取10m/s2;A、B视为质点,碰撞时间极短).
(1)求A滑过Q点时的速度大小V和受到的弹力大小F;
(2)若碰后AB最终停止在第k个粗糙段上,求k的数值;
(3)求碰后AB滑至第n个(n<k)光滑段上的速度VAB与n的关系式.
下列说法正确的是 ( )
A.玻尔对氢原子光谱的研究导致原子的核式结构模型的建立
B.可利用某些物质在紫外线照射下发射出荧光来设计防伪措施
C.天然放射现象中产生的射线都能在电场或磁场中发生偏转
D.卢瑟福依据α粒子散射实验的现象提出了原子的“核式结构”理论
E.由于光既有波动性,又具有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性
图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN和M′N′是间距为h的两平行极板,其上分别有正对的两个小孔O和O′,O′N′=ON=d,P为靶点,O′P=kd(k为大于1的整数).极板间存在方向向上的匀强电场,两极板间电压为U.质量为m、带电量为q的正离子从O点由静止开始加速,经O′进入磁场区域.当离子打到极板上O′N′区域(含N′点)或外壳上时将会被吸收.两虚线之间的区域无电场和磁场存在,离子可匀速穿过.忽略相对论效应和离子所受的重力.
求:
(1)离子经过电场仅加速一次后能打到P点所需的磁感应强度大小;
(2)能使离子打到P点的磁感应强度的所有可能值;
(3)打到P点的能量最大的离子在磁场汇总运动的时间和在电场中运动的时间.
如图所示,用一块长L1=1.0m的木板在墙和桌面间架设斜面,桌子高H=0.8m,长L2=1.5m,斜面与水平桌面的倾角θ可在0~60°间调节后固定,将质量m=0.2kg的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数μ1=0.05,物块与桌面间的动摩擦因数为μ2,忽略物块在斜面与桌面交接处的能量损失(重力加速度取g=10m/s2,最大静止摩擦力等于滑动摩擦力)
(1)求θ角增大到多少时,物块能从斜面开始下滑(用正切值表示)
(2)当θ角增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数μ2(已知sin37°=0.6,cos37°=0.8)
(3)继续增大θ角,发现θ=53°时物块落地点与墙面的距离最大,求此最大距离x.
如图甲所示的电路中,恒流源可为电路提供恒定电流I0,R为定值电阻,电流表、电压表均可视为理想电表.某同学利用该电路研究滑动变阻器RL消耗的电功率.改变RL的阻值,记录多组电流、电压的数值,得到如图乙所示的U﹣I关系图线.
回答下列问题:
(1)滑动触头向下移动时,电压表示数 (填“增大”或“减小”).
(2)I0= A.
(3)RL消耗的最大功率为 W(保留一位有效数字).