如图所示为α粒子散射实验装置,粒子打到荧光屏上都会引起闪烁,若将带有荧光屏的显微镜分别放在图中a、b、c、d四处位置。则这四处位置在相等时间内统计的闪烁次数符合实验事实的是
A.1305、25、7、1 B.202、405、625、825
C.1202、1010、723、203 D.1202、1305、723、203
图甲是利用砂摆演示简谐运动图象的装置,当盛砂的漏斗下面的薄木板被水平匀速拉出时,做简谐运动的漏斗漏出的砂在板上显示出砂摆的振动位移随时间变化的关系曲线,已知木板被水平拉动的速度为0.15m/s,图乙所示的一段木板的长度为0.60m,则这次实验砂摆的摆长大约为
A.0.03 m B.0.5m C.1.0 m D.2.0 m
两束单色光Ⅰ、Ⅱ从水下同一位置同一方向射向水面,只产生两束光线,光路图如图所示,则
A.两束光在水中传播时,光束Ⅱ的速度大于光束Ⅰ的速度
B.两束光在水中传播时波长一样
C.两束光线通过同一小孔时,光线Ⅰ的衍射现象更明显
D.光束Ⅰ从水中到空气中频率变大
红外线热像仪通过红外线遥感,可检测出经过它时的发热病人,从而可以有效控制疫情的传播。关于红外线热像仪,下列说法中正确的是
A.选择红外线进行检测,主要是因为红外线光子能量小,可以节约能量
B.红外线热像仪通过发射红外线照射人体来检测
C.红外线热像仪同时还具有杀菌作用
D.根据物体在不同温度下发射的红外线的频率和强度不同的原理来检测体温
如图所示,DEG与D'E'G'是两根电阻不计、相互平行的光滑金属导轨,间距L-O.Sm,所构成的DD'E'E为水平面、EE'G'G为倾角θ=37°的斜面,DD‘距离地面的高度h=5 m(图中未标出),E’间接有R=6 Ω的电阻,两导轨同有平行于EE'放置,与导轨接触良好的金属杆ab、cd,两杆的电阻均为r=6Ω、质量均为m= 0.4 kg,在cd的下侧,紧靠cd有两根垂直于斜面EE'G'G的固定立柱1和2。DD'的右侧有方向竖直向下的匀强磁场。现用一向左的水平恒力F作用于ab杆使其由静止开始向左运动,并最终在水平导轨上匀建运动。在ab杆匀逮运动时,cd杆对两根立柱的总压力为3.2 N。当ab杆运动到DD'处时,立即撤掉力F,最终轩落地的位置离DD'的水平距离x=2 m。ab杆在轨道上运动的过程中,通过ab杆的电荷量q=l C。g=10 m/s2,sin37°=0.6,cos37°=0.8。求;
(l)ab杆匀速运动时,cd杆所受的安培力大小;
(2)匀强磁场的磁感应强度大小;
(3)整个过程中,电路产生的焦耳热。
如图所示·固定在竖着平面内的光滑绝缘管道ABCDQ的A、Q两端与倾角θ=37°的传送带相切。不计管道内外径的差值.AB部分为半径R1=0.4 m的圆弧,CDQ部分也是圆弧.D为最高点,BC部分水平,且仅有BC段处于场强大小E=4×103 N/C,方向水平向右的匀强电场中,传送带长L=1.8 m,传送轮半径忽略不计。现将一可视为质点的带正电滑块从传送带上的Q处由静止释放,滑块能从A处平滑进入管道。已知滑块的质量m=l kg、电荷量q=5×10-4C.滑块与传送带之间的动摩擦因数μ=0.5,滑块通过管道与传送带的交接处时无速度损失,滑块电荷量始终保持不变,最大静摩擦力等于滑动摩擦力.g=10 m/s2。
(1)若传送带不动,求滑块第一次滑到A处的动能;
(2)若传送带不动·求滑块第一次滑到C处时所受圆弧轨道的弹力;
(3)改变传送带逆时针的转动速度以及滑块在Q处滑上传送带的初速度,可以使滑块刚滑上传送带就形成一个稳定的逆时针循环(即滑块每次通过装置中同一位置的速度相同)。在所有可能的循环中,求传送带速度的最小值。(结果可以用根号表示)