某卫星在半径为r的轨道1上做圆周运动,动能为Ek,变轨到轨道2上后,动能比在轨道1上减小了ΔE,在轨道2上也做圆周运动,则轨道2的半径为( )
A. B.
C. D.
一物体做加速直线运动,依次通过A、B、C三点,xAB=xBC,物体在AB段的加速度为a1,在BC段的加速度为a2,且物体在B点的速度为,则( )
A. a1>a2 B. a1=a2 C. a1<a2 D. 不能确定
如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验。若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ。重力加速度为g。要使纸板相对砝码运动,所需拉力的大小至少应大于( )
A. 3μmg B. 4μmg C. 5μmg D. 6μmg
下列关于物理学史和物理研究方法的叙述中不正确的是 ( )
A.用点电荷来代替带电体的研究方法叫理想模型法
B.利用v-t图像推导匀变速直线运动位移公式的方法是微元法
C.伽利略借助实验研究和逻辑推理得出了自由落体运动规律
D.法拉第发现电流的磁效应与他坚信电和磁之间一定存在联系的哲学思想是分不开的
如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO/重合,转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与OO/之间的夹角θ为45°。已知重力加速度大小为g,小物块与陶罐之间的最大静摩擦力大小为。
(1)若小物块受到的摩擦力恰好为零,求此时的角速度ω0;
(2)若小物块一直相对陶罐静止,求陶罐旋转的角速度的范围。
如图所示,从A点以υ0=4m/s的水平速度抛出一质量m=1kg的小物块(可视为质点),当物块运动至B点时,恰好沿切线方向进入光滑圆弧轨道BC,经圆弧轨道后滑上与C点等高、静止在粗糙水平面的长木板上,圆弧轨道C端切线水平.已知长木板的质量M=4kg,A、B两点距C点的高度分别为H=0.6m、h=0.15m,R=0.75m,物块与长木板之间的动摩擦因数μ1=0.5,长木板与地面间的动摩擦因数μ2=0.2,g=10m/s2.求:
(1)小物块运动至B点时的速度大小和方向;
(2)小物块滑动至C点时,对圆弧轨道C点的压力;
(3)长木板至少为多长,才能保证小物块不滑出长木板?