如图,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上。现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行。已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计。开始时整个系统处于静止状态。释放A后,A沿斜面下滑至速度最大时,C恰好离开地面。下列说法正确的是
A.斜面倾角α=30°
B.A获得的最大速度为
C.C刚离开地面时,B的加速度为零
D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒
质量为m的汽车在平直路面上启动,启动过程的速度图象如图所示,从t1时刻起汽车的功率保持不变,整个运动过程中汽车所受阻力恒为Ff,则
A.0~t1时间内,汽车的牵引力等于
B.t1~t2时间内,汽车的功率等于
C.汽车运动的最大速度等于
D.t1~t2时间内,汽车的平均速度小于
已知,某卫星在赤道上空轨道半径为r1的圆形轨道上绕地运行的周期为T,卫星运动方向与地球自转方向相同,赤道上某城市的人每三天恰好五次看到卫星掠过其正上方.假设某时刻,该卫星如图在A点变轨进入椭圆轨道,近地点B到地心距离为r2.设卫星由A到B运动的时间为t,地球自转周期为T0,不计空气阻力.则
A.
B.
C. 卫星在图中椭圆轨道由A到B时,机械能增大
D. 卫星由图中圆轨道进入椭圆轨道过程中,机械能不变
如图所示,固定斜面AE分成等长四部分AB、BC、CD、DE,小物块与AB、CD间动摩擦因数均为μ1;与BC、DE间动摩擦因数均为μ2,且μ1=2μ2.当小物块以速度v0从A点沿斜面向上滑动时,刚好能到达E点.当小物块以速度从A点沿斜面向上滑动时,则能到达的最高点
A.刚好为B点 B.刚好为C点
C.介于AB之间 D.介于BC之间
如图所示,水平传送带两端点A、B间的距离为L,传送带开始时处于静止状态.把一个小物体放到右端的A点,某人用恒定的水平力F使小物体以速度v1匀速滑到左端的B点,拉力F所做的功为W1、功率为P1,这一过程物体和传送带之间因摩擦而产生的热量为Q1.随后让传送带以v2的速度逆时针匀速运动,此人仍然用相同的恒定的水平力F拉物体,使它以相对传送带为v1的速度匀速从A滑行到B,这一过程中,拉力F所做的功为W2、功率为P2,物体和传送带之间因摩擦而产生的热量为Q2.下列关系中正确的是
A.W1=W2,P1<P2,Q1=Q2 B.W1=W2,P1<P2,Q1>Q2
C.W1>W2,P1=P2,Q1>Q2 D.W1>W2,P1=P2,Q1=Q2
图甲所示为索契冬奥会上为我国夺得首枚速滑金牌的张虹在1000m决赛中的精彩瞬间.现假设某速滑运动员某段时间内在直道上做直线运动的速度-时间图象可简化为图乙,已知运动员(包括装备)总质量为60kg,在该段时间内受到的阻力恒为总重力的0.1倍,g=10m/s2.则下列说法正确的是
A.在1~3 s内,运动员的加速度为0.2 m/s2
B.在1~3 s内,运动员获得的动力是30 N
C.在0~5 s内,运动员的平均速度是12.5m/s
D.在0~5 s内,运动员克服阻力做的功是3780 J