如图1所示,在光滑水平面上用水平恒力F拉质量为m的单匝正方形金属线框,线框边长为a,在位置1以速度v0进入磁感应强度为B的匀强磁场并开始计时(t=0)。若磁场的宽度为b(b>3a),在3t0时刻线框到达位置2时速度又为v0且开始离开磁场。此过程中v-t图象如图2所示,则( )
A. 线框刚进入磁场时MN边的两端电压为Bav0
B. 在t0时刻线框的速度为
C. 线框完全离开磁场瞬间(位置3)的速度与t0时刻线框的速度相同
D. 线框从进入磁场(位置1)到完全离开磁场(位置3)的过程中产生的焦耳热为2Fb
在光滑水平桌面中央固定一边长为0.3 m的正三棱柱abc,俯视如图所示。长度为L=1 m的细线,一端固定在a点,另一端拴住一质量为m=0.5 kg、不计大小的小球。初始时刻,把细线拉直在ca的延长线上,并给小球以v0=2 m/s且垂直于细线方向的水平速度,由于棱柱的存在,细线逐渐缠绕在棱柱上(不计细线与三棱柱碰撞过程中的能量损失)。已知细线所能承受的最大拉力为7 N,则下列说法中正确的是
A. 细线断裂之前,小球速度的大小保持不变
B. 细线断裂之前,小球所受细线拉力的冲量为零
C. 细线断裂之前,小球运动的总时间为0.7π s
D. 细线断裂之前,小球运动的位移大小为0.1 m
静止在匀强电场中的碳14原子核,某时刻放射的某种粒子与反冲核的初速度方向均与电场方向垂直,且经过相等的时间后形成的轨迹如图所示(a、b表示长度)。那么碳14的核反应方程可能是
A. B.
C. D.
如图所示,一长为L的木板倾斜放置,倾角为45º。一弹性小球自与木板上端等高的某处静止释放,小球落到木板上反弹时,速度大小不变且沿水平方向。若小球一次碰撞后恰好落到木板底端,则小球释放点距木板上端的水平距离为
A. B. C. D.
如图所示,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距。两导线中通有大小相等、方向均向下的恒定电流。则
A. 金属环向上运动,则环上的感应电流方向为顺时针
B. 金属环向下运动,则环上的感应电流方向为顺时针
C. 金属环向左侧直导线靠近,则环上的感应电流方向为逆时针
D. 金属环向右侧直导线靠近,则环上的感应电流方向为逆时针
已知金星到太阳的距离小于木星到太阳的距离,它们绕太阳的公转均可看作匀速圆周运动,则可判定
A. 金星绕太阳的公转周期大于木星绕太阳的公转周期
B. 金星运动的速度小于木星运动的速度
C. 金星的向心加速度大于木星的向心加速度
D. 金星的角速度小于木星的角速度