如图所示,将某正粒子放射源置于原点O,其向各个方向射出的粒子速度大小均为v0,质量均为m、电荷量均为q;在0≤y≤d的一、二象限范围内分布着一个匀强电场,方向与y轴正向相同,在d<y≤2d的一、二象限范围内分布着一个匀强磁场,方向垂直于xoy平面向里.粒子第一次离开电场上边缘y=d时,能够到达的的位置x轴坐标范围为-1.5d≤x≤1.5d, 而且最终恰好没有粒子从y=2d的边界离开磁场。已知sin37°=0.6,cos37°=0.8,不计粒子重力以及粒子间的相互作用,求
(1)电场强度E;
(2)磁感应强度B;
(3)粒子在磁场中运动的最长时间(只考虑粒子第一次在磁场中的运动时间)
一质量为M=1.99kg的小物块随足够长的水平传送带一起运动,被一个以初速度v0水平向左飞来的的子弹击中,设子弹的质量m=0.01kg,子弹射中木块并留在物块中(子弹与木块相对运动的时间极短),如图所示,地面观察着记录了小物块被击中后的速度随时间的变化关系,如图所示(图中取向右运动的方向为正方向),已知传送带的速度保持不变,求:
(1)物块与传送带间的动摩擦系数
(2)子弹的初速度v0的大小
(3)计算因物块与传送带相对滑动过程的摩擦生热Q
温度传感器是一种将温度变化转化为电学量变化的装置,它通过测量传感器元件的电学量随温度的变化来实现温度的测量,其核心部件是由半导体材料制成的热敏电阻,在某次实验中,为了测量热敏电阻RT在0℃到100℃之间多个温度下的阻值,一实验小组设计了如图甲所示电路。
其实验步骤如下:
①正确连接电路,在保温容器中加入适量开水;
②加入适量的冰水,待温度稳定后,测量不同温度下热敏电阻的阻值;
③重复第②步操作若干次,测得多组数据。
(1)该小组用多用电表“×100”档测热敏电阻在100℃下的阻值,发现表头指针偏转的角度很大;为了准确地进行测量,应换到_____档(选填“×10”、 “×1k”);如果换挡后就用表笔连接热敏电阻进行读数,那么欠缺的实验步骤是:_________________________,补上该步骤后,表盘的示数如图乙所示,则它的电阻是_________ 。
实验小组算得该热敏电阻在不同温度下的阻值,并据此绘得图丙的R-t关系图线;
(2)若把该热敏电阻与电源(电动势E=1.5V、内阻不计)、电流表(量程为5mA、内阻Rg=100Ω)、电阻箱R0串联起来,连成如图丁所示的电路,用该电阻作测量探头,把电流表的电流刻度改为相应的温度刻度,就得到了一个简单的“热敏电阻测温计”。
①电流表刻度较大处对应的温度刻度应该_________(填“较大”或“较小”);
②若电阻箱的阻值取R0=200Ω,则电流表3mA处所对应的温度刻度为______℃。
在做“验证力的平行四边形定则”的实验中:
(1)某同学准备了以下器材,其中多余的器材是______(选填序号);
A.方木板 B.图钉(几个) C.白纸 D.天平 E.刻度尺 F.测力计(两只)
G.橡皮条 H.细线套(两个) I.铅笔
(2)某同学根据实验数据画出力的图示,如图所示,图上标出了F1、F2、F、F′四个力,其中______(填上述字母)不是由弹簧秤直接测得的;若F与F′的______和______都基本相同,说明共点力合成的平行四边形定则得到了验证.
(3)同学们在操作过程中有如下议论,其中对减小实验误差有益的说法是_______(填字母代号).
A.两细绳必须等长
B.弹簧秤、细绳、橡皮条都应与木板平行
C.用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大
D.拉橡皮条的细绳要长些,标记同一细绳方向的两点要尽量靠近.
如图甲所示,一质量为M的长木板静置于光滑水平面上,其上放置一质量为m小滑块.木板受到随时间t变化的水平拉力F作用时,用传感器测出长木板的加速度a与水平拉力F的关系如图乙所示,取g=10m/s2,则( )
A. 滑块的质量m=2kg,木板的质量M=4kg
B. 当F=8N时,滑块的加速度为1m/s2
C. 滑块与木板之间的滑动摩擦因数为0.2
D. 当0<F<6N时,滑块与木板之间的摩擦力随F变化的函数关系f=2/3F
如图所示,倾角为300的斜面体静止在粗糙的水平地面上,一根不可伸长的轻绳两端分别系着小球A和物块B,跨过固定于斜面体顶端的定滑轮O(不计滑轮的摩擦),A的质量为m,B的质量为4m.开始时,用手托住A,使OA段绳恰好处于水平伸直状态(绳中无拉力),OB绳平行于斜面,此时B静止不动,将A由静止释放,在其下摆过程中B和斜面体都始终静止不动.则在绳子到达竖直位置之前,下列说法正确的是( )
A. 小球A所受重力的功率先增大后减小
B. 物块B受到的摩擦力先减小后增大
C. 若适当增加OA段绳子的长度,物块可能发生运动
D. 地面对斜面体的摩擦力方向一定水平向右