如图所示,粒子源能放出初速度为0,比荷均为=1.6×104 C/kg的带负电粒子,进入水平方向的加速电场中,加速后的粒子正好能沿圆心方向垂直进入一个半径为r=0.1 m的圆形磁场区域,磁感应强度随时间变化的关系为B=0.5sin ωt(T),在圆形磁场区域右边有一屏,屏的高度为h=0.6 m,屏距磁场右侧距离为L=0.2 m,且屏中心与圆形磁场圆心位于同一水平线上.现要使进入磁场中的带电粒子能全部打在屏上,试求加速电压的最小值.
如图甲所示,在坐标系xOy的第一象限内存在图乙所示的交变磁场(取垂直纸面向外为正),OD与x轴正方向的夹角为α,α=37°,P(4L,3L)是OD上一点.t=0时刻,一质量为m、所带电荷量为q的带正电粒子从P点沿y轴负方向射入磁场,经过一定的整周期(交变磁场变化的周期)后粒子恰好能经过原点O,已知粒子的重力不计,sin 37°=0.6,求:
(1)粒子的运动速度应满足的条件.
(2)交变磁场变化的周期T.
如图所示,回旋加速器D形盒的半径为R,所加磁场的磁感应强度为B,被加速的质子从D形盒中央由静止出发,经交变电场加速后进入磁场.设质子在磁场中做匀速圆周运动的周期为T,若忽略质子在电场中的加速时间,则下列说法正确的是( )
A. 如果只增大交变电压U,则质子在加速器中运行时间将变短
B. 如果只增大交变电压U,则电荷的最大动能会变大
C. 质子在电场中加速的次数越多,其最大动能越大
D. 交流电的周期应为T
利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域。如图是霍尔元件的工作原理示意图,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,C、D两侧面会形成电势差,下列说法中正确的是( )
A. 若元件的载流子是自由电子,则D侧面电势高于C侧面电势
B. 若元件的载流子是自由电子,则C侧面电势高于D侧面电势
C. 在测地球赤道上方的地磁场强弱时,元件的工作面应保持竖直
D. 在测地球赤道上方的地磁场强弱时,元件的工作面应保持水平
如图所示,一个静止的质量为m、带电荷量为q的带电粒子(不计重力),经电压U加速后垂直进入磁感应强度为B的匀强磁场中,粒子最后落到P点,设OP=x,下列图线能够正确反映x与U之间的函数关系的是( )
A. B.
C. D.
如图所示,一束正离子从S点沿水平方向射出,在没有偏转电场、磁场时恰好击中荧光屏上的坐标原点O;若同时加上电场和磁场后,正离子束最后打在荧光屏上坐标系的第Ⅲ象限中,则所加电场E和磁场B的方向可能是(不计离子重力及其之间相互作用力)( )
A. E向下,B向上 B. E向下,B向下
C. E向上,B向下 D. E向上,B向上