为了“探究动能改变与合外力做功”的关系,某同学设计了如下实验方案:
第一步:把带有定滑轮的木板(有滑轮的)一端垫起,把质量为M的滑块通过细绳跨过定滑轮与质量为m的重锤相连,重锤后连一穿过打点计时器的纸带,调整木板倾角,直到轻推滑块后,滑块沿木板向下匀速运动,如图甲所示.
第二步:保持长木板的倾角不变,将打点计时器安装在长木板靠近滑轮处,取下细绳和重锤,将滑块与纸带相连,使纸带穿过打点计时器,然后接通电源,释放滑块,使之从静止开始向下加速运动,打出纸带,如图乙所示.打出的纸带如图丙所示.
请回答下列问题:
(1)已知O、A、B、C、D、E、F相邻计数点间的时间间隔为Δt,根据纸带求滑块速度,打点计时器打B点时滑块速度vB=________.
(2)已知重锤质量为m,当地的重力加速度为g,要测出某一过程合外力对滑块做的功还必须测出这一过程滑块________(写出物理名称及符号,只写一个物理量),合外力对滑块做功的表达式W合=________.
(3)算出滑块运动OA、OB、OC、OD、OE段合外力对滑块所做的功W以及在A、B、C、D、E各点的速度v,以v2为纵轴、W为横轴建立坐标系,描点作出v2-W图像,可知该图像是一条________,根据图像还可求得________.
如图所示,两个物体以相同大小的初速度从O点同时分别向x轴正、负方向水平抛出,它们的轨迹恰好满足抛物线方程y=,那么以下说法正确的是(某点的曲率半径可认为等于曲线上该点的瞬时速度所对应的匀速圆周运动的半径)( )
A. 物体被抛出时的初速度为
B. 物体被抛出时的初速度为
C. O点的曲率半径为
D. O点的曲率半径为2k
已知如图,光滑绝缘水平面上有两只完全相同的金属球A、B,带电量分别为-2Q与-Q。现在使它们以相同的初动能E0(对应的速度大小为v0)开始相向运动且刚好能发生接触。接触后两小球又各自反向运动。当它们刚好回到各自的出发点时的动能分别为E1和E2,速度大小分别为v1和v2。有下列说法其中正确的是( )
A. E1=E2> E0,v1=v2>v0
B. E1=E2= E0,v1=v2=v0
C. 接触点一定在两球初位置连线的中点右侧某点
D. 两球必将同时返回各自的出发点
如下图所示,A和B是电阻为R的电灯,L是自感系数较大的线圈,当S1闭合、S2断开且电路稳定时,A、B亮度相同,再闭合S2,待电路稳定后将S1断开,下列说法中,正确的是( )
A. B灯立即熄灭
B. A灯将比原来更亮一些后再熄灭
C. 有电流通过B灯,方向为c→d
D. 有电流通过A灯,方向为b→a
右图是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述不正确的是( )
A. 质谱仪是分析同位素的重要工具
B. 速度选择器中的磁场方向垂直纸面向外
C. 能通过狭缝P的带电粒子的速率等于E/B
D. 粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小
在地磁场作用下处于静止的小磁针上方,平行于小磁针水平放置一直导线,当该导线中通有电流时,小磁针会发生偏转;当通过该导线电流为I时,小磁针左偏30°,则当小磁针左偏60°时,通过导线的电流为(已知直导线在某点产生的磁场与通过直导线的电流成正比)( )
A. 2I B. 3I C. D. 无法确定