某同学设计了一个电磁推动加喷气推动的火箭发射装置,如图所示.竖直固定在绝缘底座上的两根长直光滑导轨,间距为L.导轨间加有垂直导轨平面向里的匀强磁场B.绝缘火箭支撑在导轨间,总质量为m,其中燃料质量为m′,燃料室中的金属棒EF电阻为R,并通过电刷与电阻可忽略的导轨良好接触.引燃火箭下方的推进剂,迅速推动刚性金属棒CD(电阻可忽略且和导轨接触良好)向上运动,当回路CEFDC面积减少量达到最大值ΔS,用时Δt,此过程激励出强电流,产生电磁推力加速火箭.在Δt时间内,电阻R产生的焦耳热使燃料燃烧形成高温高压气体,当燃烧室下方的可控喷气孔打开后,喷出燃气进一步加速火箭.
(1)求回路在Δt时间内感应电动势的平均值及通过金属棒EF的电荷量,并判断金属棒EF中的感应电流方向;
(2)经Δt时间火箭恰好脱离导轨,求火箭脱离时的速度v0;(不计空气阻力)
(3)火箭脱离导轨时,喷气孔打开,在极短的时间内喷射出质量为m′的燃气,喷出的燃气相对喷气前火箭的速度为u,求喷气后火箭增加的速度Δv。(提示:可选喷气前的火箭为参考系)
某兴趣小组利用如图所示弹射装置将小球竖直向上抛出来验证机械能守恒定律.一部分同学用游标卡尺测量出小球的直径为d,并在A点以速度vA竖直向上抛出;另一部分同学团结协作,精确记录了小球通过光电门B时的时间为Δt.用刻度尺测出光电门A,B间的距离为h.已知小球的质量为m,当地的重力加速度为g,完成下列问题.
(1)小球在B点时的速度大小为____;
(2)小球从A点到B点的过程中,动能减少量为________;
(3)在误差允许范围内,若等式________成立,就可以验证机械能守恒(用题目中给出的物理量符号表示).
如图(甲)为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中RB表示有磁场时磁敏电阻的阻值,R0表示无磁场时磁敏电阻的阻值.为测量某磁场的磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值.
(1)请在图(乙)中添加连线,将电源(电动势3 V,内阻不计)、磁敏电阻(无磁场时阻值R0=250 Ω)、滑动变阻器(总电阻约10 Ω)、电流表(量程2.5 mA,内阻约30 Ω)、电压表(量程3 V,内阻约3 kΩ)、开关连接成测量磁敏电阻阻值的实验电路____________.
(2)将该磁敏电阻置于待测匀强磁场中.不考虑磁场对电路其他部分的影响.闭合开关后,测得如下表所示的数据:
| 1 | 2 | 3 | 4 | 5 | 6 |
U/V | 0.00 | 0.45 | 0.91 | 1.50 | 1.79 | 2.71 |
I/mA | 0.00 | 0.30 | 0.60 | 1.00 | 1.20 | 1.80 |
根据上表可求出磁敏电阻的测量值RB=____Ω,结合图(甲)可知待测磁场的磁感应强度B=___T.(结果均保留两位有效数字)
带滑轮的平板C放在水平桌面上,小车A通过绕过滑轮的轻绳与物体B相连,如图所示。A、C间及绳与滑轮间摩擦不计,C与桌面间动摩擦因数为μ ,最大静摩擦力等于滑动摩擦力,A、C质量均为m,小车A运动时平板C保持静止,物体B的质量为M可改变,则下列说法正确的是( )
A. 当M=m时,C受到桌面的摩擦力大小为mg
B. 当M=m时,C受到桌面的摩擦力大小为
C. 在M改变时,保持C静止的μ必须满足
D. 无论μ值为多大,C都会保持静止
如图为哈勃望远镜拍摄的银河系中被科学家称为“罗盘座T星”系统的照片,该系统是由一颗白矮星和它的类日伴星组成的双星系统,图片下面的亮点为白矮星,上面的部分为类日伴星(中央的最亮的为类似太阳的天体)。由于白矮星不停地吸收由类日伴星抛出的物质致使其质量不断增加,科学家预计这颗白矮星在不到1000万年的时间内会完全“爆炸”,从而变成一颗超新星。现假设类日伴星所释放的物质被白矮星全部吸收,并且两星之间的距离在一段时间内不变,两星球的总质量不变,不考虑其它星球对该“罗盘座T星”系统的作用,则下列说法正确的是( )
A. 两星之间的万有引力不变
B. 两星的运动周期不变
C. 类日伴星的轨道半径减小
D. 白矮星的线速度变小
关于科学家和他们的贡献,下列说法正确的是( )
A. 德布罗意提出:实物粒子也具有波动性,而且粒子的能量ε和动量p跟它所对应的波的频率ν和波长λ之间,遵从关系ν=和λ=
B. 卢瑟福认为,原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中
C. 按照爱因斯坦的理论,在光电效应中,金属中的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W0,剩下的表现为逸出后电子的初动能Ek
D. 玻尔的原子理论第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功地解释了所有原子光谱的实验规律