如图所示,在xOy平面的第Ⅰ象限内,有垂直纸面向外的匀强磁场,在第Ⅳ象限内,有垂直纸面向里的匀强磁场,磁感应强度大小均为B。P点是x轴上的一点,横坐标为x0。现在原点O处放置一粒子放射源,能沿xOy平面,以与x轴成45°角的恒定速度v0向第一象限发射某种带正电的粒子。已知粒子第1次偏转后与x轴相交于A点,第n次偏转后恰好通过P点,不计粒子重力。求
(1)粒子的比荷;
(2)粒子从O点运动到P点所经历的路程和时间。
(3)若全部撤去两个象限的磁场,代之以在xOy平面内加上与速度v0垂直的匀强电场(图中没有画出),也能使粒子通过P点,求满足条件的电场的场强大小和方向。
1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速问题.现在回旋加速器被广泛应用于科学研究和医学设备中.某型号的回旋加速器的工作原理如图(甲)所示,图(乙)为俯视图.回旋加速器的核心部分为两个D形盒,分别为D1、D2.D形盒装在真空容器里,整个装置放在巨大的电磁铁两极之间的强大磁场中,磁场可以认为是匀强磁场,且与D形盒底面垂直.两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.D形盒的半径为R,磁场的磁感应强度为B.设质子从粒子源A处进入加速电场的初速度不计.质子质量为m、电荷量为+q.加速器接入一定频率的高频交变电源,加速电压为U.加速过程中不考虑相对论效应和重力作用.
(1)求质子第1次经过狭缝被加速后进人D2盒时的速度大小v1;
(2)求质子第1次经过狭缝被加速后进人D2盒后运动的轨道半径r1;
(3)求质子从静止开始加速到出口处所需的时间t.
在如图所示的直角坐标系第一象限与第三象限分布匀强磁场和匀强电场,磁感应强度为B。现在第三象限中从P点以初速度v0沿x轴正方向发射质量为m,带+q的离子,离子经电场后恰从坐标原点O射入磁场,离子重力不计。
(1)求电场强度为E的大小
(2)求离子进入磁场的速度
(3)求离子在磁场中运动的时间及磁场出射点距O点的距离d。
如图甲所示,竖直面MN的左侧空间中存在竖直向上的匀强电场(上、下及左侧无边界)。一个质量为m、电荷量为q、可视为质点的带正电小球,以水平初速度沿PQ向右做直线运动若小球刚经过D点时(t=0),在电场所在空间叠加如图乙所示随时间周期性变化、垂直纸面向里的匀强磁场,使得小球再次通过D点时与PQ连线成角,已知D、Q间的距离为, 小于小球在磁场中做圆周运动的周期,忽略磁场变化造成的影响,重力加速度为g。求:
(1)电场强度E的大小
(2)与的比值
(3)小球过D点后做周期性运动。则当小球运动的周期最大时,求出此时磁感应强度及运动的最大周期的大小,并在图中画出此情形下小球运动一个周期的轨迹。
如图所示,当给圆环中通电时,与其共面且在正下方的小磁针S极转向读者,则圆环中的电流方向是__________ (填“顺时针”或“逆时针”),圆环中小磁针的__________极转向读者.
如图所示,一半径为R的圆形区域内有垂直于纸面向里的匀强磁场,一质量为,电量为的正电荷(重力忽略不计)以速度沿正对着圆心O的方向射入磁场,从磁场中射出时速度方向改变了角,磁场的磁感应强度大小为
A. B.
C. D.