如图所示,两根足够长的固定的平行金属导轨位于倾角θ=30°的斜面上,导轨上、下端各接有阻值R=10Ω的电阻,导轨自身电阻忽略不计,导轨宽度L=2m,在整个导轨平面内都有垂直于导轨平面向上的匀强磁场,磁感应强度B=0.5T.质量为m=0.1kg,电阻r=5Ω的金属棒ab在较高处由静止释放,金属棒ab在下滑过程中始终与导轨垂直且与导轨接触良好.当金属棒ab下滑高度h =3m时,速度恰好达到最大值v=2m/s.求:
(1)金属棒ab在以上运动过程中机械能的减少量.
(2)金属棒ab在以上运动过程中导轨下端电阻R中产生的热量.(g=10m/s2)
如图(甲)所示,一对平行光滑轨道放置在水平面上,两轨道相距l=1m,两轨道之间用R=2Ω的电阻连接,一质量m=0.5kg的导体杆与两轨道垂直,静止放在轨道上,杆及轨道的电阻均可忽略不计,整个装置处于磁感应强度B=2T的匀强磁场中,磁场方向垂直轨道平面向上,现用水平拉力沿轨道方向拉导体杆,拉力F与导体杆运动的位移s间的关系如图(乙)所示,当拉力达到最大时,导体杆开始做匀速运动,当位移s=2.5m时撤去拉力,导体杆又滑行了s′=2m停下,求:
(1)导体杆运动过程中的最大速度;
(2)拉力F作用过程中,电阻R上产生的焦耳热。
如图所示,ef,gh为水平放置的足够长的平行光滑导轨,导轨间距为L=1m,导轨左端连接一个R=2Ω的电阻,将一根质量为0.2kg的金属棒cd垂直地放置导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计,整个装置放在磁感应强度为B=2T的匀强磁场中,磁场方向垂直于导轨平面向下.现对金属棒施加一水平向右的拉力F,使棒从静止开始向右运动.试解答以下问题.
(1)若施加的水平外力恒为F=8N,则金属棒达到的稳定速度v1是多少?
(2)若施加的水平外力的功率恒为P=18W,则金属棒达到的稳定速度v2是多少?
(3)若施加的水平外力的功率恒为P=18W,则金属棒从开始运动到速度v3=2m/s的过程中电阻R产生的热量为8.6J,则该过程所需的时间是多少?
如图所示,一根电阻为R=0.6Ω的导线弯成一个圆形线圈,圆半径r=1m,圆形线圈质量m=1kg,此线圈放在绝缘光滑的水平面上,在y轴右侧有垂直于线圈平面B=0.5T的匀强磁场。若线圈以初动能E0=5J沿x轴方向滑进磁场,当进入磁场0.5m时,线圈中产生的电能为Ee=3J。求:
(1)此时线圈的运动速度
(2)此时线圈与磁场左边缘两交接点间的电压
(3)此时线圈加速度大小
如图所示,足够长的两光滑导轨水平放置,两条导轨相距为d,左端MN用阻值不计的导线相连,金属棒ab可在导轨上滑动,导轨单位长度的电阻为r0,金属棒ab的电阻不计.整个装置处于竖直向下的均匀磁场中,磁场的磁感应强度随时间均匀增加,B=kt,其中k为常数.金属棒ab在水平外力的作用下,以速度v沿导轨向右做匀速运动,t=0时,金属棒ab与MN相距非常近.求:
(1)当t=to时,水平外力的大小F.
(2)同学们在求t=to时刻闭合回路消耗的功率时,有两种不同的求法:
方法一:t=to时刻闭合回路消耗的功率P=F•v.
方法二:由Bld=F,得I= (其中R为回路总电阻)
这两种方法哪一种正确?请你做出判断,并简述理由.
用伏安法测金属丝的电阻,如图所示是一次测量时电表的示数,其中安培表的示数为________;伏特表的示数为________。