电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加有电压的相距为d的两块水平平行放置的导体板组成,匀强磁场的左边界与偏转电场的右边界相距为s,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板没有加电压时,这些电子通过两板之间的时间为2t0,当在两板间加如图乙所示的周期为2t0、幅值恒为U0的电压时,所有电子均从两板间通过,进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:
(1)如果电子在t=0时刻进入偏转电场,则离开偏转电场时的侧向位移大小是多少?
(2)电子在刚穿出两板之间的偏转电场时最大侧向位移与最小侧向位移之比为多少?
(3)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?(已知电子的质量为m、电荷量为e)
如图所示,在两个水平平行金属极板间存在着竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E=2×106N/C和B1=0.1T,极板的长度l=m,间距足够大.在板的右侧还存在着另一圆形区域的匀强磁场,磁场的方向为垂直于纸面向外,圆形区域的圆心O位于平行金属极板的中线上,圆形区域的半径R=m。有一带正电的粒子以某速度沿极板的中线水平向右飞入极板后恰好做匀速直线运动,然后进入圆形磁场区域,飞出圆形磁场区域后速度方向偏转了60°,不计粒子的重力,粒子的比荷=2×108C/kg。
(1)求粒子沿极板的中线飞入的初速度v0;
(2)求圆形区域磁场的磁感应强度B2的大小;
(3)在其他条件都不变的情况下,将极板间的磁场B1撤去,为使粒子飞出极板后不能进入圆形区域的磁场,求圆形区域的圆心O离极板右边缘的水平距离d应满足的条件。
如图所示,两光滑金属导轨,间距d=2m,在桌面上的部分是水平的,仅在桌面上有磁感应强度B=1T、方向竖直向下的有界磁场,电阻R=3Ω,桌面高H=0.8m,金属杆ab质量m=0.2kg,其电阻r=1Ω,从导轨上距桌面h=0.2m的高度处由静止释放,落地点距桌面左边缘的水平距离s=0.4m,取g=10m/s2,求:
(1)金属杆刚进入磁场时,R上的电流大小;
(2)整个过程中电阻R放出的热量;
(3)磁场区域的宽度。
如图所示,质量M=0.6kg的滑板静止在光滑水平面上,其左端C距锁定装置D的水平距离l=0.5m,滑板的上表面由粗糙水平面和光滑圆弧面在B点平滑连接而成,粗糙水平面长L=4m,圆弧的半径R=0.3m.现让一质量m=0.3kg,可视为质点的小滑块以大小.方向水平向左的初速度滑上滑板的右端A.若滑板到达D处即被锁定,滑块返回B点时装置D即刻解锁,已知滑块与滑板间的动摩擦因数μ=0.2,重力加速度g=10m/s2.求:
(1)滑板到达D处前瞬间的速率;
(2)滑块到达最大高度时与圆弧顶点P的距离;
(3)滑块与滑板间摩擦产生的总热量;
某高速公路的一个出口路段如图所示,情景简化:轿车从出口A进入匝道,先匀减速直线通过下坡路段至B点(通过B点前后速率不变),再匀速率通过水平圆弧路段至C点,最后从C点沿平直路段匀减速到D点停下。已知轿车在A点的速度v0=72km/h,AB长L1=l50m;BC为四分之一水平圆弧段,限速(允许通过的最大速度)v=36 km/h,轮胎与BC段路面间的动摩擦因数μ=0.5,最大静摩擦力可认为等于滑动摩擦力,CD段为平直路段长L2=50m,重力加速度g取l0m/s2。
(1)若轿车到达B点速度刚好为v =36 km/h,求轿车在AB下坡段加速度的大小;
(2)为保证行车安全,车轮不打滑,求水平圆弧段BC半径R的最小值;
(3)轿车A点到D点全程的最短时间。
如图所示,可视为质点的A、B两物体置于一静止长纸带上,纸带的左端与A、A与B之间距离均为d =0.5 m,两物体与纸带间的动摩擦因数均为,与地面间的动摩擦因数均为。现以恒定的加速度a=2m/s2向右水平拉动纸带,重力加速度g= l0 m/s2。求:
(1)A物体在纸带上的滑动时间;
(2)在给定的坐标系中定性画出A、B两物体的v-t图象;
(3)两物体A、B停在地面上的距离。