质量均为m的物体A和B分别系在一根不计质量的细绳两端,绳子跨过固定在倾角为30°的斜面顶端的定滑轮上,斜面固定在水平地面上,开始时把物体B拉到斜面底端,这时物体A离地面的高度为0.8米,如图所示.若摩擦力均不计,从静止开始放手让它们运动.(斜面足够长,g取10m/s2)求:
(1)物体A着地时的速度;
(2)物体A着地后物体B沿斜面上滑的最大距离.
如图所示,长L=1.5 m、质量M=3 kg的木板静止放在水平面上,质量m=1 kg 的小物块(可视为质点)放在木板的右端,木板和物块间的动摩擦因数μ1=0.1,木板与地面间的动摩擦因数μ2=0.2.现对木板施加一水平向右的恒定拉力F,取g=10 m/s2.
(1)求使物块不掉下去的最大拉力F0(物块受到的最大静摩擦力等于滑动摩擦力).
(2)如果拉力F=21 N恒定不变,经多长时间物块从板上滑下
如图1所示,山区高速公路上,一般会在较长的下坡路段的坡底设置紧急避险车道。如图2所示,将紧急避险车道视为一个倾角为θ的固定斜面。一辆质量为m 的汽车在刹车失灵的情况下,以速度v冲上紧急避险车道匀减速至零。汽车在紧急避险车道上受到除重力之外的阻力,大小是自身重力的k倍。
(1)求出汽车行驶时的加速度;
(2)求出汽车行驶的距离。
在“验证机械能守恒定律”的一次实验中,质量m=1kg的重物自由下落,在纸带上打出一系列的点,如下图所示(相邻记数点时间间隔为0.02s),那么:
(1)纸带的________ (填“P”或“C”,必须用字母表示)端与重物相连;
(2)打点计时器打下计数点B时,物体的速度vB=________m/s(保留到小数点后两位);
(3)从起点P到打下计数点B的过程中物体的重力势能减少量△EP=________J,此过程中物体动能的增加量△Ek=________J;(g取9.8m/s2保留到小数点后两位)
(4)通过计算,数值上△EP________△Ek(填“<”、“>”或“=”)
在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:
A.让小球多次从____________(填相同,或不同)位置上滚下,在一张印有小方格的纸记下小球碰到铅笔笔尖的一系列位置,如右下图中a、b、c、d所示。
B.安装好器材,注意轨道末端水平,记下平抛初位置O点和过O点的竖直线。
C.取下白纸以O为原点,以竖直线为y轴建立坐标系,用平滑曲线画平抛运动物体的轨迹。
(1)完成上述步骤,将正确的答案填在横线上。
(2)上述实验步骤的合理顺序是__________________。
(3)已知图中小方格的边长L=1.25cm,则小球平抛的初速度为v0=________(用L、g表示),其值是___________________________________(取g=9.8m/s2),
如图,质量是M、倾角是θ的斜面置于水平面上,质量是m的物块放在斜面上,现对物块施一水平向右的推力,使物体与斜面保持相对静止,各接触面光滑,下列说法正确的是( )
A. 推力F=mgtanθ
B. 推力
C. 斜面对地面的压力等于(M+m)g
D. 斜面对地面的压力大于(M+m)g