如图,半径为R的光滑半圆形轨道ABC在竖直平面内,与水平轨道CD相切于C点,D端有一被锁定的轻质压缩弹簧,弹簧左端连接在固定的挡板上,弹簧右端Q到C点的距离为2R.质量为m可视为质点的滑块从轨道上的P点由静止滑下,刚好能运动到Q点,并能触发弹簧解除锁定,然后滑块被弹回,且刚好能通过圆轨道的最高点A.已知∠POC=60°,求:
(1)滑块第一次滑至圆形轨道最低点C时对轨道压力;
(2)滑块与水平轨道间的动摩擦因数μ;
(3)弹簧被锁定时具有的弹性势能.
如图所示,倾角为37º的斜面长L=1.9m,在斜面底端正上方的O点将一小球以速度v0=3m/s水平抛出,与此同时释放在斜面顶端的滑块,经过一段时间后小球恰好能以垂直斜面的方向击中滑块(小球和滑块均可视为质点,重力加速度g=10m/s2,sin37º=0.6,cos37º=0.8)
求:(1)抛出点O离斜面底端的高度;
(2)滑块与斜面间的动摩擦因数μ。
某中学的部分学生组成了一个课题小组,对海啸威力进行了模拟研究,他们设计了如下的模型:如图甲在水平地面上放置一个质量为m=4kg的物体,让其在随位移均匀减小的水平推力作用下运动,推力F随位移x变化的图象如图乙所示,已知物体与地面之间的动摩擦因数为μ=0.5,g=10m/s2,则:
(1)运动过程中物体的最大加速度为多少?
(2)在距出发点什么位置时物体的速度达到最大?
(3)物体在水平面上运动的最大位移是多少?
如图1所示,用质量为m的重物通过滑轮牵引小车,使它在长木板上运动,打点计时器在纸带上记录小车的运动情况.利用该装置可以完成“探究动能定理”的实验.
(1)接通电源,释放小车,打点计时器在纸带上打下一系列点,将打下的第一个点标为O.在纸带上依次取A、B、C……若干个计数点,已知相邻计数点间的时间间隔为T.测得A、B、C……各点到O点的距离分别为x1、x2、x3……,如图2所示.
图2
实验中,重物质量远小于小车质量,可认为小车所受的拉力大小为mg,从打O点到打B点的过程中,拉力对小车做的功W=________,打B点时小车的速度v=________.
(2)以v2为纵坐标,W为横坐标,利用实验数据作出如图3所示的v2W图像.由此图像可得v2随W变化的表达式为____________________.根据功与能的关系,动能的表达式中可能包含v2这个因子;分析实验结果的单位关系,与图线斜率有关的物理量应是____________.
(3)假设已经完全消除了摩擦力和其他阻力的影响,若重物质量不满足远小于小车质量的条件,则从理论上分析,图4中正确反映v2W关系的是____________________.
A.B.C.D.
用如图实验装置验证m1、m2组成的系统机械能守恒。m2从高处由静止开始下落,m1上拖着的纸带打出一系列的点,对纸带上的点迹进行测量,即可验证系统机械能守恒定律。下图给出的是实验中获取的一条纸带:两物体从静止释放,0是打下的第一个点,每相邻两计数点间还有4个点(图中未标出),计数点间的距离如图所示。已知m1= 50g 、m2=150g ,交流电的频率为50Hz,g取9.8m/s2则(结果保留两位有效数字)
(1)在纸带上打下记数点5时的速度v=________ m/s;
(2)在计数点0到计数点5过程中系统动能的增量△EK = _______J,系统势能的减少量△EP =_________J;
如图,滑块a、b的质量均为m,a套在固定直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接.不计摩擦,a、b可视为质点,重力加速度大小为g.则( )
A. a落地前,轻杆对b一直做正功
B. a落地时速度大小为
C. a下落过程中,其加速度大小始终不大于g
D. a落地前,当a的机械能最小时,b对地面的压力大小为mg