竖直放置的固定绝缘光滑轨道由半径分别为R的四分之一圆周MN和半径r的半圆周NP拼接而成,两段圆弧相切于N点,R>2r,小球带正电,质量为m,电荷量为q.已知将小球由M点静止释放后,它刚好能通过P点,重力加速度为g,不计空气阻力.下列说法正确的是( )
A.若整个轨道空间加竖直向上的匀强电场E(Eq<mg),则小球仍能通过P点
B.若整个轨道空间加竖直向下的匀强电场,则小球不能通过P点
C.若整个轨道空间加垂直纸面向里的匀强磁场,则小球一定不能通过P点
D.若整个轨道空间加垂直纸面向外的匀强磁场,则小球可能不能通过P点
图示是一个半径为R的竖直圆形磁场区域,磁感应强度大小为B,磁感应强度方向垂直纸面向内。有一个粒子源在圆上的A点不停地发射出速率相同的带正电的粒子,带电粒子的质量均为m,运动的半径为r,在磁场中的轨迹所对应的圆心角为α。以下说法正确的是
A. 若r=2R,则粒子在磁场中运动的最长时间为
B. 若r=2R,粒子沿着与半径方向成45°角斜向下射入磁场,则有关系成立
C. 若r=R,粒子沿着磁场的半径方向射入,则粒子在磁场中的运动时间为
D. 若r=R,粒子沿着与半径方向成60°角斜向下射入磁场,则圆心角α为150°
一个足够长的绝缘斜面,倾角为θ,置于匀强磁场中,磁感应强度为B,方向垂直于纸面向里,与水平面平行,如图所示,现有一带电荷量为q,质量为m的小球在斜面顶端由静止开始释放,小球与斜面间的动摩擦因数为μ,则
A. 如果小球带正电,小球在斜面上的最大速度为
B. 如果小球带正电,小球在斜面上的最大速度为
C. 如果小球带负电,小球在斜面上的最大速度为
D. 如果小球带负电,小球在斜面上的最大速度为
如图所示,一个绝缘且内壁光滑的环形细圆管,固定于竖直平面内,环的半径为R(比细管的内径大得多),在圆管内的最低点有一个直径略小于细管内径的带正电小球处于静止状态,小球的质量为m,带电荷量为q,重力加速度为g.空间存在一磁感应强度大小未知(不为零),方向垂直于球形细圆管所在平面且向里的匀强磁场.某时刻,给小球一方向水平向右,大小为的初速度,则以下判断正确的是( )
A. 无论磁感应强度大小如何,获得初速度后的瞬间,小球在最低点一定受到管壁的弹力作用
B. 无论磁感应强度大小如何,小球一定能到达环形细管的最高点,且小球在最高点一定受到管壁的弹力作用
C. 无论磁感应强度大小如何,小球一定能到达环形细管的最高点,且小球到达最高点时的速度大小都相同
D. 小球从环形细圆管的最低点运动到所能到达的最高点的过程中,机械能不守恒
如图所示,质量为m,带电荷量为+q的P环套在固定的水平长直绝缘杆上,整个装置处在垂直于杆的水平匀强磁场中,磁感应强度大小为B.现给环一向右的初速度v0( ),则( )
A. 环将向右减速,最后匀速
B. 环将向右减速,最后停止运动
C. 从环开始运动到最后达到稳定状态,损失的机械能是mv02
D. 从环开始运动到最后达到稳定状态,损失的机械能是mv02-m()2
如图所示,在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长的 固定绝缘杆MN,小球P套在杆上,已知P的质量为m,电量为+q,电场强度为E、磁感应强度为B,P与杆间的动摩擦因数为μ,重力加速度为g。小球由静止开始下滑直到稳定的过程中:( )
A. 小球的加速度先增大后减小
B. 小球的机械能和电势能的总和保持不变
C. 下滑加速度为最大加速度一半时的速度可能是
D. 下滑加速度为最大加速度一半时的速度可能是