劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示.置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U,若A处粒子源产生的质子质量为m、电 荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是
A. 质子被加速后的最大速度不可能超过2πRf
B. 质子离开回旋加速器时的最大动能与加速电压U成正比
C. 质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为
D. 不改变磁感应强度B和交流电频率f该回旋加速器的最大动能不变
如图甲所示,打开电流和电压传感器,将磁铁置于螺线管正上方距海绵垫高为h处静止释放,磁铁穿过螺线管后掉落到海绵垫上并静止.若磁铁下落过程中受到的磁阻力远小于磁铁重力,且不发生转动,不计线圈电阻.图乙是计算机荧屏上显示的UI-t曲线,其中的两个峰值是磁铁刚进入螺线管内部和刚从内部出来时产生的.下列说法正确的是
A. 若仅增大h,两个峰值间的时间间隔会增大
B. 若仅减小h,两个峰值都会减小
C. 若仅减小h,两个峰值可能会相等
D. 若仅减小滑动变阻器的值,两个峰值都会增大
如图所示,两根通电长直导线a、b平行放置,a、b中的电流分别为I和2I,此时a受到的磁场力为F,以该磁场力方向为正方向.ab的正中间再放置一根与ab平行共面的通电长直导线c后,a受到的磁场力大小变为2F,则此时b受到的磁场力的大小为
A. 0 B. F C. 4F D. 7F
一台发电机最大输出功率为4 000 kW,电压为4 000 V,经变压器T1升压后向远方输电.输电线路总电阻为R=1kΩ.到目的地经变压器T2降压, 负载为多个正常发光的灯泡(220 V 60 W).若在输电线路上消耗的功率为发电机输出功率的10%,变压器T1和T2的耗损可忽略,发电机处于满负荷工作状态,则
A. T1原、副线圈电流分别为103A和20 A
B. T2原、副线圈电压分别为1.8×105 V和220 V
C. T1和T2的变压比分别为1:50和40 :1
D. 有6×104盏灯泡(220V 60 W)正常发光
电池甲和乙的电动势分别为E1和E2,内电阻分别为r1和r2,已知 E1<E2,若用甲、乙电池分别向某个电阻R供电,则在这个电阻上所消耗的电功率相同.若用甲、乙电池分别向某个电阻R′供电,则在R′上消耗的电功率分别为P1和P2,已知R′>R则
A. r1>r2,P1 >P2 B. r1<r2,P1 <P2 C. r1<r2,P1 >P2 D. r1>r2,P1 <P2
物体导电是由其中的自由电荷定向移动引起的,这些可以移动的自由电荷又叫载流子.金属导体的载流子是自由电子,现代广泛应用的半导体材料分为两大类:一类是N型半导体,它的载流子为电子;另一类是P型半导体,它的载流子为“空穴”,相当于带正电的粒子,如果把某种材料制成的长方体放在匀强磁场中,磁场方向如图所示,且与前后侧面垂直,长方体中通有方向水平向右的电流,设长方体的上下表面M、N的电势分别为φM和φN,则下列判断中正确的是( )
A. 如果是P型半导体,有φM>φN
B. 如果是N型半导体,有φM<φN
C. 如果是P型半导体,有φM<φN
D. 如果是金属导体,有φM<φN