宽为L,共N匝,线圈的下部悬在匀强磁场中,磁场方向垂直纸面。当线圈中通有电流I(方向如图)时,,在天平左、右两边加上质量各为m1、m2的砝码,天平平衡.当电流反向(大小不变)时,右边再加上质量为m的砝码后,天平重新平衡.由此可知
A. 磁感应强度的方向垂直纸面向里,大小为
B. 磁感应强度的方向垂直纸面向里,大小为
C. 磁感应强度的方向垂直纸面向外,大小为
D. 磁感应强度的方向垂直纸面向外,大小为
如图所示,线框由A位置开始下落,在磁场中受到的安培力如果总小于重力,则它在A、B、C、D四个位置(B、D位置恰好线框有一半在磁场中)时,加速度关系为
A.
B.
C.
D.
如图所示为地磁场磁感线的示意图,在北半球地磁场的竖直分量向下,飞机在我国上空匀速巡航,机翼保持水平,飞行高度不变,由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼末端处的电势为,右方机翼末端处电势为
A. 若飞机从西往东飞,
B. 若飞行从东往西飞,
C. 若飞机从南往北飞,
D. 若飞机从北往南非,
如图甲所示,水平桌面上有一条轻质弹簧,左端固定在竖直墙面上,右端放一个可视为质点的小物块,小物块的质量为m=1kg,当弹簧处于原长时,小物块静止于O点。水平桌面右侧有一竖直放置的光滑圆弧轨道MNP,P为地面上一点,MN为其竖直方向的直径。现对小物块施加一个外力F,使它缓慢移动,将弹簧压缩至A点时,压缩量为x=O.1m,在这一过程中,所用外力F与压缩量的关系如图乙所示。然后撤去F释放小物块,让小物块沿桌面运动,已知O点至桌面B点的距离为L=0.2m,水平桌面的高度为h=0.6m。计算时,可认为滑动摩擦力近似等于最大静摩擦力,g取10m/s2。求:
(1)弹簧压缩过程中存贮的最大弹性势能EP;
(2)小物块到达桌边B点时速度的大小VB:
(3)小物块落地时恰好沿切线由P点进入圆弧轨道,并恰好通过M点,求圆弧轨道的半径R。
如图所示,一水平方向的传送带以恒定速度v=2m/s沿顺时针方向匀速转动,传送带右端固定着一光滑的四分之一圆弧轨道,并与圆弧下端相切。一质量为m=1kg的物体自圆弧轨道的最高点由静止滑下,圆弧轨道的半径为R=0.45m,物体与传送带之间的动摩擦因数为μ=0.2,不计物体滑过圆弧轨道与传送带交接处时的能量损失,传送带足够长,g取10m/s2。求:
(1)物体第一次滑到圆弧轨道下端时,对轨道的压力大小FN;
(2)物体从第一次滑上传送带到离开传送带的过程中,摩擦力对传送带做的功W,以及由于摩擦而产生的热量Q。
如图所示,长为L的细线一端固定在O点,另一端拴一质量为m的小球在竖直面内做圆周运动。已知小球在最高点A时受到细线的拉力刚好等于小球自身的重力,重力加速度为g,不计一切阻力。若小球运动到最高点A时细线断裂或小球运动到最低点B时细线断裂,两种情况下小球落在水平地面上的位置到O点正下方水平地面上的C点的距离相等,求O点到C点的距离H。