如图甲所示的是安全恒温饮水机的自动控制电路.左边是一个对水加热的容器,内有密封绝缘可调的电热丝发热器和接触开关S1,只要有水浸没S1,它就会导通.Rx是一个热敏电阻,低温时呈现高电阻,达到高温时(如水的沸点)呈现低电阻.Ry是一个可变电阻,低温时Rx≫Ry,高温(水的沸点)时Rx≪Ry.中方框P内是一个逻辑门,A、B是逻辑门的输入端,Z是输出端.当A、B输入都为高电势时,Z才输出高电势.右边虚线框J内是一个继电器,当Z输出高电势时电磁线圈中有电流,S2被吸动闭合,发热器工作.该加热电路中,电的电动势为220V,内电阻为4Ω,电热丝是一根额定电流为5A、总阻值为220Ω的均匀电阻丝制成的圆环形滑动变阻器,如图乙所示.
(1)根据题意,甲图中方框P是一个__(选填“与”、“或”、“非”)逻辑门,该逻辑门输入信号由水位高低控制的输入端是__,输入信号由水温高低控制的输入端是__.(后两空选填“A”、“B”)
(2)当加热电路安全工作时,电的可能最高效率和可能最大输出功率分别是多少?
如图甲所示,有一磁感应强度大小为B、垂直纸面向外的匀强磁场,磁场边界OP与水平方向夹角为45°,紧靠磁场右上边界放置长为L,间距为d的平行金属板M、N,磁场边界上的O点与N板在同一水平面上,O1、O2是电场左右边界中点.在两板间存在如图乙所示的交变电场(取竖直向下为正方向).某时刻从O点竖直向上同时发射两个相同的粒子a和b,质量为m,电量为+q,初速度不同.粒子a在图乙中的t=时刻,从O1点水平进入板间电场运动,由电场中的O2点射出.粒子b恰好从M板左端进入电场.(不计粒子重力和粒子间相互作用,电场周期T未知)
求:(1)粒子a、b从磁场边界射出时的速度va、vb;
(2)粒子a从O点进入磁场到射出O2点运动的总时间;
(3)如果交变电场的周期,要使粒子b能够穿出板间电场,求这电场强度大小E0满足的条件.
如图所示,在光滑绝缘的水平面上,用长为2L的绝缘轻杆连接两个质量均为m的带电小球A和B.A球的带电量为+2q,B球的带电量为﹣3q,两球组成一带电系统.虚线MN与PQ平行且相距3L,开始时A和B分别静止于虚线MN的两侧,虚线MN恰为AB两球连线的垂直平分线.若视小球为质点,不计轻杆的质量,在虚线MN、PQ间加上水平向右的电场强度为E的匀强电场后.试求:
(1)B球刚进入电场时,带电系统的速度大小;
(2)带电系统向右运动的最大距离和此过程中B球电势能的变化量;
(3)带电系统运动的周期.
如图所示,PQ为粗糙水平面,左端P处有一固定挡板,右端Q处与以速率逆时针转动的水平传送带平滑连接。两滑块A、B质量均为m,A滑块与处于压缩状态的弹簧不挂接,B滑块静止在Q点。现将A滑块由静止释放,它向右运动距离后与B滑块碰撞,碰撞后A与B粘在一起,共同在水平传送带上继续运动,经距离到达传送带最右端M时速度恰好为零。已知两滑块与水平面PQ之间以及与传送带之间的动摩擦因数均为μ,重力加速度为g,求;
(1)A与B碰撞结束时的速度;
(2)弹簧的最大弹性势能;
(3)两滑块与传送带之间因摩擦产生的热量Q。
如图所示,长为9l水平传送带以恒定的速度作顺时针转动,紧邻传送带的右端放置一长为6.5l滑板,滑板静止在光滑水平地面上,滑板的上表面与传送带处在同一水平面。在距滑板右端一段距离处固定一挡板C。一质量为m的物块被轻放在传送带的最左端(A点),物块在传送带的作用下到达B点后滑上滑板,滑板在物块的怍用下运动到C处撞上档板并被牢固粘连。物块可视为质点,滑板的质量M=2m,物块与传送带、物块与滑板间的动摩擦因数均为,重力加速度取g。求:
(1)求物块在传送带的作用下运动到B点时的速度大小v;
(2)若物块和滑板共速时,滑板恰与挡板C相撞,求开始时滑板右端到C的距离L;
(3)若滑板右端到挡板C的距离为L(己知),且l≤L≤5l,试求【解析】
a. 若物块与滑板共速后,滑板撞上挡板C,则物块从滑上滑板到物块撞上档板C的过程中,物块克服摩擦力做的功;
b. 若物块与滑板共速前,滑板撞上挡板C,则物块从滑上滑板到物块撞上档板C的过程中,物块克服摩擦力做的功;并求出物块到C时速度的最大值。
由于地球自转的影响,地球表面的重力加速度会随纬度的变化而有所不同.已知地球表面两极处的重力加速度大小为,在赤道处的重力加速度大小为,地球自转的周期为,引力常量为.假设地球可视为质量均匀分布的球体.求:
(1)质量为的物体在地球北极所受地球对它的万有引力的大小.
(2)地球的半径.
(3)地球的密度.