2016年奥运会在巴西里约热内卢举办,在以下几个奥运会比赛项目中,研究对象可视为质点的是
A. 在撑杆跳高比赛中研究运动员手中的支撑杆在支撑地面过程中的转动情况时
B. 跆拳道比赛中研究运动员的动作时
C. 确定马拉松运动员在比赛中的位置时
D. 乒乓球比赛中研究乒乓球的旋转时
下列各单位中不是国际单位制中基本单位的是
A. 千克 B. 牛顿 C. 秒 D. 安培
下列说法中正确的是_____。
A.雨水不能透过布雨伞是因为液体表面存在张力
B.分子间的距离r增大,分子间的作用力做负功,分子势能增大
C.悬浮在液体中的微粒越大,在某一时间撞击它的液体分子数越多,布朗运动越明显
D.温度升高,分子热运动的平均动能增大,但并非每个分子的速率都增大
E.热量可以从低温物体传到高温物体
【答案】ADE
【解析】由于液体表面存在张力,故雨水不能透过布雨伞,故A正确;当分子间距离小于平衡距离时,随分子距离的增大,分子力做正功,分子势能减少,当分子间距离大于平衡距离时,随分子距离的增大,分子力做负功,分子势能增加,故B错误;悬浮在液体中的微粒越大,在某一瞬间无规则撞击它的液体分子数越多,抵消越多,布朗运动越不明显,故C错误;温度是分子平均动能的标志,温度升高分子的平均动能增大,分子热运动加剧,但个别分子的速率可能还会减小,故D正确;热量可以从低温物体传到高温物体,但要引起其它变化,故E正确.故选ADE.
【题型】实验题
【结束】
14
如图所示,内壁光滑的圆柱形气缸竖直放置,内有一质量为m的活塞封闭一定质量的理想气体.己知活塞截面积为S.外界大气压强为p0,缸内气体的温度为T、体积为V.现对气缸缓慢降温,使活塞下移高度为h,该过程中气体放出的热量为Q;停止降温并“锁定”活塞,使活塞不再移动,再对气体缓慢加热到温度T.己知重力加速度为g,求:
(1)加热到温度T时气体的压强;
(2)加热过程中气体吸收的热量。
某工地某一传输工件的装置可简化为如图所示的情形,AB为一段足够长的曲线轨道,BC为一段足够长的水平轨道,CD为一段圆弧轨道,圆弧半径r=1m,三段轨道均光滑。一长为L=2m、质量为M=1kg的平板小车最初停在BC轨道的最左端,小车上表面刚好与AB轨道相切,且与CD轨道最低点处于同一水平面。一可视为质点、质量为m=2kg的工件从距AB轨道最低点h高处沿轨道自由滑下,滑上小车后带动小车也向右运动,小车与CD轨道左端碰撞(碰撞时间极短)后即被粘在C处。工件只有从CD轨道最高点飞出,才能被站在台面DE上的工人接住。工件与小车的动摩擦因数为μ=0.5,取g=10m/s2,
(1)若h=2.8m,则工件滑到圆弧底端B点时对轨道的压力为多大?
(2)要使工件能被站在台面DE上的工人接住,求h的取值范围.
【答案】(1)(2)
【解析】(1)工件从起点滑到圆弧轨道底端B点,设到B点时的速度为vB,根据动能定理:
工件做圆周运动,在B点,由牛顿第二定律得:
由①②两式可解得:N=40N
由牛顿第三定律知,工件滑到圆弧底端B点时对轨道的压力为N′=N=40N
(2)①由于BC轨道足够长,要使工件能到达CD轨道,工件与小车必须能达共速,设工件刚滑上小车时的速度为v0,工件与小车达共速时的速度为v1,假设工件到达小车最右端才与其共速,规定向右为正方向,则对于工件与小车组成的系统,由动量守恒定律得:
mv0=(m+M)v1
由能量守恒定律得:
对于工件从AB轨道滑下的过程,由机械能守恒定律得:
代入数据解得:h1=3m.
②要使工件能从CD轨道最高点飞出,h1=3m为其从AB轨道滑下的最大高度,设其最小高度为h′,刚滑上小车的速度为v′0,与小车达共速时的速度为v′1,刚滑上CD轨道的速度为v′2,规定向右为正方向,由动量守恒定律得:
mv′0=(m+M)v′1…⑥
由能量守恒定律得:
工件恰好滑到CD轨道最高点,由机械能守恒定律得:
工件在AB轨道滑动的过程,由机械能守恒定律得:
联立。⑥⑦⑧⑨,代入数据解得:h′=m
综上所述,要使工件能到达CD轨道最高点,应使h满足:m<h⩽3m.
【名师点睛】(1)工件在光滑圆弧上下滑的过程,运用机械能守恒定律或动能定理求出工件滑到圆弧底端B点时的速度.在B点,由合力提供向心力,由牛顿第二定律求出轨道对工件的支持力,从而得到工件对轨道的压力.
(2)由于BC轨道足够长,要使工件能到达CD轨道,工件与小车必须能达共速,根据动量守恒定律、能量守恒定律求出滑上小车的初速度大小,根据机械能守恒求出下滑的高度h=3m,要使工件能从CD轨道最高点飞出,h=3m为其从AB轨道滑下的最大高度,结合动量守恒定律和能量守恒定律、机械能守恒定律求出最小高度,从而得出高度的范围.
【题型】解答题
【结束】
13
下列说法中正确的是_____。
A.雨水不能透过布雨伞是因为液体表面存在张力
B.分子间的距离r增大,分子间的作用力做负功,分子势能增大
C.悬浮在液体中的微粒越大,在某一时间撞击它的液体分子数越多,布朗运动越明显
D.温度升高,分子热运动的平均动能增大,但并非每个分子的速率都增大
E.热量可以从低温物体传到高温物体
如图所示,在水平平面内有一固定的光滑绝缘圆环,半径r =0.3 m,圆环上套有一质量m =1×10-2 kg、带电量q= +5×l0-5 C的小球。匀强电场方向水平向右且与圆轨道所在平面平行。A为圆环最高点,B、C与圆心O在同一条水平线上。小球从A点以初速度v0 =m/s向右运动,运动到B点时的速度vB =3 m/s。重力加速度g取10 m/s2。A、B、C在同一水平面上。求:
(1)电场强度E的大小;
(2)小球最小速度大小及此处对圆环的作用力大小。
【答案】(1)1000N/C(2)0.05N
【解析】试题分析:(1)小球从A运动到B的过程中,电场力和重力均做正功,由动能定理列式,可求电场强度.(2)小球从A运动到C的过程,由动能定理求出小球通过C点的速度.在C点,由电场力和轨道的支持力的合力提供向心力,由牛顿运动定律求解.
(1)小球从A到B,由动能定理得:
代入数据解得:E=1000N/C
(2)小球从A到C,由动能定理得:
在C点,由牛顿第二定律得:
解得:
根据牛顿第三定律知,小球运动到C点时对圆环的作用力大小为0.05N
【题型】解答题
【结束】
12
某工地某一传输工件的装置可简化为如图所示的情形,AB为一段足够长的曲线轨道,BC为一段足够长的水平轨道,CD为一段圆弧轨道,圆弧半径r=1m,三段轨道均光滑。一长为L=2m、质量为M=1kg的平板小车最初停在BC轨道的最左端,小车上表面刚好与AB轨道相切,且与CD轨道最低点处于同一水平面。一可视为质点、质量为m=2kg的工件从距AB轨道最低点h高处沿轨道自由滑下,滑上小车后带动小车也向右运动,小车与CD轨道左端碰撞(碰撞时间极短)后即被粘在C处。工件只有从CD轨道最高点飞出,才能被站在台面DE上的工人接住。工件与小车的动摩擦因数为μ=0.5,取g=10m/s2,
(1)若h=2.8m,则工件滑到圆弧底端B点时对轨道的压力为多大?
(2)要使工件能被站在台面DE上的工人接住,求h的取值范围.
在测定一节干电池的电动势和内电阻的实验中,备有下列器材:
A.待测的干电池(电动势约为1.5 V,内电阻小于1.0 Ω )
B.电流表A1(量程0—3 mA,内阻=10 Ω)
C.电流表A2(量程0—0.6 A,内阻=0.1 Ω)
D.滑动变阻器R1(0—20 Ω,10 A)
E.滑动变阻器R2(0—200 Ω,l A)
F.定值电阻R0(990 Ω)
G.开关和导线若干
(1)某同学发现上述器材中虽然没有电压表,但给出了两个电流表,于是他设计了如图甲所示的(a)、(b)两个参考实验电路,其中合理的是______图所示的电路;在该电路中,为了操作方便且能准确地进行测量,滑动变阻器应选______(填写器材前的字母代号)。
(2)图乙为该同学根据(1)中选出的合理的实验电路,利用测出的数据绘出的I1-I2图线(I1为电流表A1的示数,I2为电流表A2的示数,且I2的数值远大于I1的数值),则由图线可得被测电池的电动势E=____________V,内阻r=____________Ω。(结果保留小数点后2位)
(3)所测得电池的电动势E测 电动势的真实值E真。(填“大于”、“小于”或者“等于”)
【答案】(1)b,D;(2)1.50(1.49也给分);1.00;(3)小于
【解析】
试题分析:(1)上述器材中虽然没有电压表,但给出了两个电流表,将电流表G串联一个电阻,可以改装成较大量程的电压表.a、b两个参考实验电路,其中合理的是b,因为电源的内阻较小,所以应该采用总阻值较小的滑动变阻器,有利于数据的测量和误差的减小.滑动变阻器应选D.
(2)由图示电源U-I图象可知,图象与纵轴交点坐标值是1.5,电源电动势:E=0.0015(Rg1+R0)=0.0015×(10+990)=1.50V,
图象斜率:,
解得:r=0.001(Rg1+R0)=0.001×(10+990)=1.00Ω;
(3)由图甲可知,由于电压表的分流,电流表测量出来的电流总是小于电源的总电流,而且电压表示数越大,电流的测量值与真实值差异越大,作出U-I的真实图象,如图蓝线所示,图象与纵坐标的交点表示电源的电动势,则电池电动势测量值小于真实值;
考点:测定电源的电动势及内阻
【名师点睛】本题考查电源电动势和内电阻的测量,要注意明确实验原理,注意本题中需要对电表进行改装;然后再根据闭合电路欧姆定律列式对数据进行处理,同时明确误差情况即可。
【题型】实验题
【结束】
11
如图所示,在水平平面内有一固定的光滑绝缘圆环,半径r =0.3 m,圆环上套有一质量m =1×10-2 kg、带电量q= +5×l0-5 C的小球。匀强电场方向水平向右且与圆轨道所在平面平行。A为圆环最高点,B、C与圆心O在同一条水平线上。小球从A点以初速度v0 =m/s向右运动,运动到B点时的速度vB =3 m/s。重力加速度g取10 m/s2。A、B、C在同一水平面上。求:
(1)电场强度E的大小;
(2)小球最小速度大小及此处对圆环的作用力大小。