物理实验中,常用一种叫“冲击电流计”的仪器测定通过电路的电荷量.如图为探测线圈和冲击电流计串联后可用来测定磁场的磁感应强度.已知线圈的匝数为n,面积为S,线圈与冲击电流计组成的回路电阻为R.把线圈放在被测匀强磁场中,开始时线圈平面与磁场垂直,现把探测线圈绕垂直磁场的轴翻转90°,冲击电流计测出通过线圈的电荷量为q,由上述数据可测出被测磁场的磁感应强度为( )
A. B. C. D.
如图所示,两根足够长的光滑金属导轨MN、PQ平行放置,导轨平面与水平面的夹角为θ,导轨的下端接有电阻.当导轨所在空间没有磁场时,使导体棒ab以平行于导轨平面的初速度v0冲上导轨平面,ab上升的最大高度为H;当导轨所在空间存在方向与导轨平面垂直的匀强磁场时,再次使ab以相同的初速度从同一位置冲上导轨平面,ab上升的最大高度为h.两次运动中ab始终与两导轨垂直且接触良好.关于上述情景,下列说法中正确的是 ( )
A. 两次上升的最大高度比较,有H<h
B. 两次上升的最大高度比较,有H=h
C. 无磁场时,导轨下端的电阻中有电热产生
D. 有磁场时,导轨下端的电阻中有电热产生
如图所示,甲、乙两个矩形线圈同处于纸面内,甲的ab边与乙的cd边平行且靠得较近,甲、乙两线圈分别处于垂直纸面方向的匀强磁场中,穿过甲的磁场的磁感应强度为B1,方向指向纸面内,穿过乙的磁场的磁感应强度为B2,方向指向纸面外,两个磁场可同时变化.当发现ab边和cd边之间有排斥力时,磁场的变化情况可能是( )
A. B1变小,B2变大 B. B1不变,B2变小 C. B1变小,B2变小 D. B1变大,B2变大
1831年,英国物理学家法拉第发现了电磁感应定律,从此永久地改变了世界.关于这段物理学史,下列叙述错误的是( )
A. 法拉第发现电磁感应现象后不久,曾亲手制造了世界上第一台发电机,他是人类进入电气时代的先驱之一
B. 以前的物理学家都相信引力是即时作用,不需要媒介和时间,电磁力也是这样,但法拉第不同意这种超距作用观点,他创造了“场”和“力线” (包括电场线和磁感线)的概念
C. 法拉第通过研究发现,闭合电路中的感应电流的大小与磁通量的大小成正比
D. 1820年丹麦物理学家奥斯特发现了电流的磁效应,揭示了电、磁间有重要联系,经过多年艰苦探索,法拉第发现电磁感应现象,进一步推动了电和磁的统一和发展
两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图所示。C与B发生碰撞并立即结成一个整体D。在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连。过一段时间,突然解除锁定(锁定及解除锁定无机械能损失)。已知A、B、C三球的质量均为m。求:
(1)弹簧长度刚被锁定后A球的速度。
(2)在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。
如图甲所示(俯视图),绝缘的水平桌面上有三个相邻的矩形区域I、II、III,区域I的宽度为,区域II、III的宽度均为,水平轴与分界线均垂直,区域I有竖直向上的磁场,磁感线沿分界线方向分布是均匀的,沿方向分布是不均匀的;区域II无磁场;区域III有磁感应强度为=0.5T、方向竖直向上的匀强磁场,与轴平行的两光滑平行导轨固定在桌面上,导轨间距为0.3m,左端接一电阻R.一质量为m=0.2kg、长度为L=0.3m的导体棒AC在水平向右的恒力F作用下从分界线M处由静止开始沿导轨方向向右运动,其速度的二次方与位移的大小关系如图乙所示,若棒和导轨的电阻均不计,棒始终与导轨垂直且接触良好.求:
(1)力F的大小和电阻R的阻值;
(2)棒在区域I中的位移与磁感应强度大小的关系式.