在探究动能定理的实验中,将小车放在一端有滑轮的长木板上,让纸带穿过打点计时器,一端固定在小车上。实验中平衡摩擦后,小车的另一端用细线挂钩码,细线绕过固定在长木板上的定滑轮,线的拉力大小就等于钩码的重力,这样就可以研究拉力做功和小车动能的关系。已知所挂钩码的质量m=1.0×10-2 kg,小车的质量m0=8.5×10-2 kg(取g=10 m/s2)。
(1)若实验中打点纸带如图所示,打点时间间隔为0.02 s,每三个计时点取一个计数点,O点是打点起点,则打B点时,小车的速度vB=______ m/s,小车的动能EkB=______ J。从钩码开始下落至B点,拉力所做的功是________J。
(2)根据纸带算出相关各点的速度v,量出小车运动距离s,则以为纵轴,以s为横轴画出的图线应是图中的________,图线的斜率表示小车的________________(填“质量”或“加速度”)。
质量为m=2kg的物体沿水平面向右做直线运动,t=0时刻受到一个水平向左的恒力F,如图甲所示,此后物体的v-t图象如图乙所示,取水平向右为正方向,g=10m/s2,则( )
A. 物体与水平面间的动摩擦因数为
B. 10s末恒力F的瞬时功率为6W
C. 10s末物体在计时起点左侧2m处
D. 10s内物体克服摩擦力做功34J
如图所示,一小球自A点由静止自由下落,到B点时与弹簧接触,到C点时弹簧被压缩到最短.若不计弹簧质量和空气阻力,在小球由A→B→C的过程中,且取地面为零势面,则( )
A.小球从A→B的过程中机械能守恒;小球从B→C的过程中只有重力和弹力做功,所以机械能也守恒
B.小球在B点时动能最大
C.小球减少的机械能,等于弹簧弹性势能的增量
D.小球到达C点时动能为零,重力势能为零,弹簧的弹性势能最大
两个质量不等的小铁块A和B,分别从两个高度相同的光滑斜面和圆弧斜坡的顶点由静止滑向底部,如图2所示,下列说法中正确的是( )
A.下滑过程重力所做的功相等
B.它们到达底部时动能相等
C.它们到达底部时速度相等
D.它们分别在最高点时机械能总和跟到达最低点时的机械能总和相等
如图所示,物体放在粗糙的水平桌面上,当对它施加如图甲所示的拉力F,使它由静止发生位移s,对它施加如图乙所示的拉力F,使它由静止发生位移s,F与水平方向夹角均为α,则关于做功的下述说法中正确的是( )
A. 图乙中F做功多
B. 两图中F做功一样多
C. 图乙中克服摩擦力做功多
D. 甲、乙中克服摩擦力做功相同
撑杆跳高是指运动员双手握住一根特制的轻杆,经过快速助跑后,借助轻杆撑地的反弹力量,使身体腾起,越过横杆.撑杆跳高可以简化成如图所示的三个阶段,助跑、起跳撑杆上升、越杆下降落地.如果运动员只是通过借助撑杆把助跑提供的动能转化为上升过程中的重力势能,运动员助跑到10 m/s后起跳,g取10 m/s2,最多能使自身重心升高( )
A. 10 m B. 5 m C. 4.5 m D. 无法计算