分子动理论较好地解释了物质的宏观热力学性质。据此可判断下列说法中正确的是()
A. 显微镜下观察到墨水中的小炭粒在不停的作无规则运动,这反映了炭粒分子运动的无规则性
B. 分子间的相互作用力随着分子间距离的增大,一定先减小后增大
C. 分子势能随着分子间距离的增大,可能先减小后增大
D. 在真空、高温条件下,可以利用分子扩散向半导体材料掺入其它元素
E. 单位时间内,气体分子对容器壁单位面积上的碰撞次数减少,气体的压强不一定减小
如图,木板A静止在光滑水平面上,其左端与固定台阶相距x.与滑块B(可视为质点)相连的细线一端固定在O点.水平拉直细线并给B一个竖直向下的初速度,当B到达最低点时,细线恰好被拉断,B从A右端的上表面水平滑入.A与台阶碰撞无机械能损失,不计空气阻力.已知A的质量为2m,B的质量为m,A、B之间动摩擦因数为μ;细线长为L、能承受的最大拉力为B重力的5倍;A足够长,B不会从A表面滑出;重力加速度为g.
(1)求B的初速度大小v0和细线被拉断瞬间B的速度大小v1;
(2)A与台阶只发生一次碰撞,求x满足的条件;
(3)x在满足(2)条件下,讨论A与台阶碰撞前瞬间的速度.
如图甲所示,电阻不计的光滑平行金属导轨相距L = 0.5m,上端连接R=0.5Ω的电阻,下端连着电阻不计的金属卡环,导轨与水平面的夹角θ=300,导轨间虚线区域存在方向垂直导轨平面向上的磁场,其上、下边界之间的距离s = 10m,磁感应强 度B-t图如图乙所示.长为L且质量为m= 0.5kg的金属棒ab的电阻不计,垂直导 轨放置于距离磁场上边界d = 2.5m处,在t= 0时刻由静止释放,棒与导轨始终接触良好,滑至导轨底端被环卡住不动g取10m/s2,求:
(1)棒运动到磁场上边界的时间;
(2)棒进入磁场时受到的安培力;
(3)在0-5s时间内电路中产生的焦耳热.
某同学用如图(a)所示的实验电路来测量未知电阻Rx的阻值.将电阻箱接入a、b之间,闭合电键S,适当调节滑动变阻器R′后保持滑片位置不变,改变电阻箱的阻值R,得到多组电压表的示数U与R的数据,并绘出的U-R图象如图(b)所示.
(1)请用笔画线代替导线,根据电路图在图(c)中画出缺少的两根导线________.
(2)用待测电阻Rx替换电阻箱,读得电压表示数为5.0V,利用图(b)中的U-R图象可得Rx=___Ω.(保留两位有效数字).
(3)使用较长时间后,电源的电动势可认为不变,但其内阻增大,若仍使用该装置和图(b)中的U-R图象来测定某一电阻,则测定结果将________(选填“偏大”、“偏小”或“不变”) .若仍想使用该电路和(b)中测绘的U-R关系图像测量电阻,则需对电路进行简单修正:将电阻箱的阻值调到10Ω,并接入a、b之间,调整滑动变阻器滑片的位置,使电压表示数为________V,之后保持滑动变阻器阻值不变,即可用原来的方法继续测量电阻.
某物理兴趣小组为“验证动能定理”和“测当地的重力加速度”,采用了如图甲所示的装置,其中m1=50g、m2=150g.开始时保持装置静止,然后释放物块m2,m2可以带动m1拖着纸带打出一系列的点,对纸带上的点进行测量,只要证明,即可验证动能定理,同时也可测出重力加速度的数值,其中h为m2的下落高度,v是对应时刻m1、m2的速度大小.某次实验打出的纸带如图乙所示,0是打下的第一个点,两相邻点间还有4个点没有标出,交流电频率为50Hz.(以下计算结果均保留三位有效数字)
(1)系统的加速度大小为______ m/s2,在打点0~5的过程中,系统动能的增量△E1= ______ J.
(2)某同学作出的图象如图丙所示,若忽略一切阻力的情况下,则当地的重力加速度g= ______ m/s2.
如图所示,有一垂直于纸面向外的磁感应强度为B的有界匀强磁场(边界上有磁场),其边界为一边长为L的正三角形,A、B、C为三角形的顶点.今有一质量为m、电荷量为+q的粒子(不计重力),以速度v=从AB边上某点P既垂直于AB边又垂直于磁场的方向射入磁场,然后从BC边上某点Q射出.则( )
A. |PB|< B. |PB|<
C. |QB|≤ D. |QB|≤