下列说法正确的是
A. 单位m、kg、N是国际单位制中的基本单位
B. 物体的位移为零时,路程也一定为零
C. 广州开往北京的T180次列车于17:40分出发指的是时刻
D. 参考系、质点是理想化模型
如图所示,两个可导热的气缸竖直放置,它们的底部由一细管连通(忽略细管的容积)。两气缸各有一个活塞,质量分别为m1和m2,活塞与气缸无摩擦。活塞的下方为理想气体,上方为真空。当气体处于平衡状态时,两活塞位于同一高度h.(已知m1=2m,m2=m)
(1)在两活塞上同时各放一质量为m的物块,求气体再次达到平衡后两活塞的高度差(假定环境温度始终保持为T0);
(2)在达到上一问的终态后,环境温度由T0缓慢上升到1.25T0,试问在这个过程中,气体对活塞做了多少功?(假定在气体状态变化过程中,两物块均不会碰到气缸顶部)。
分子动理论较好地解释了物质的宏观热力学性质。据此可判断下列说法中正确的是()
A. 显微镜下观察到墨水中的小炭粒在不停的作无规则运动,这反映了炭粒分子运动的无规则性
B. 分子间的相互作用力随着分子间距离的增大,一定先减小后增大
C. 分子势能随着分子间距离的增大,可能先减小后增大
D. 在真空、高温条件下,可以利用分子扩散向半导体材料掺入其它元素
E. 单位时间内,气体分子对容器壁单位面积上的碰撞次数减少,气体的压强不一定减小
如图,木板A静止在光滑水平面上,其左端与固定台阶相距x.与滑块B(可视为质点)相连的细线一端固定在O点.水平拉直细线并给B一个竖直向下的初速度,当B到达最低点时,细线恰好被拉断,B从A右端的上表面水平滑入.A与台阶碰撞无机械能损失,不计空气阻力.已知A的质量为2m,B的质量为m,A、B之间动摩擦因数为μ;细线长为L、能承受的最大拉力为B重力的5倍;A足够长,B不会从A表面滑出;重力加速度为g.
(1)求B的初速度大小v0和细线被拉断瞬间B的速度大小v1;
(2)A与台阶只发生一次碰撞,求x满足的条件;
(3)x在满足(2)条件下,讨论A与台阶碰撞前瞬间的速度.
如图甲所示,电阻不计的光滑平行金属导轨相距L = 0.5m,上端连接R=0.5Ω的电阻,下端连着电阻不计的金属卡环,导轨与水平面的夹角θ=300,导轨间虚线区域存在方向垂直导轨平面向上的磁场,其上、下边界之间的距离s = 10m,磁感应强 度B-t图如图乙所示.长为L且质量为m= 0.5kg的金属棒ab的电阻不计,垂直导 轨放置于距离磁场上边界d = 2.5m处,在t= 0时刻由静止释放,棒与导轨始终接触良好,滑至导轨底端被环卡住不动g取10m/s2,求:
(1)棒运动到磁场上边界的时间;
(2)棒进入磁场时受到的安培力;
(3)在0-5s时间内电路中产生的焦耳热.
某同学用如图(a)所示的实验电路来测量未知电阻Rx的阻值.将电阻箱接入a、b之间,闭合电键S,适当调节滑动变阻器R′后保持滑片位置不变,改变电阻箱的阻值R,得到多组电压表的示数U与R的数据,并绘出的U-R图象如图(b)所示.
(1)请用笔画线代替导线,根据电路图在图(c)中画出缺少的两根导线________.
(2)用待测电阻Rx替换电阻箱,读得电压表示数为5.0V,利用图(b)中的U-R图象可得Rx=___Ω.(保留两位有效数字).
(3)使用较长时间后,电源的电动势可认为不变,但其内阻增大,若仍使用该装置和图(b)中的U-R图象来测定某一电阻,则测定结果将________(选填“偏大”、“偏小”或“不变”) .若仍想使用该电路和(b)中测绘的U-R关系图像测量电阻,则需对电路进行简单修正:将电阻箱的阻值调到10Ω,并接入a、b之间,调整滑动变阻器滑片的位置,使电压表示数为________V,之后保持滑动变阻器阻值不变,即可用原来的方法继续测量电阻.