某同学为了测量截面为正三角形的玻璃三棱镜的折射率,先在白纸上放好三棱镜,在棱镜的左侧插上两枚大头针和,然后在棱镜的右侧观察到和的像,当的像恰好被的像挡住时,插上大头针和,使挡住、的像,挡住,也挡住、的像,在纸上标出的大头针位置和三棱镜轮廓如图所示.
(1)在图上画出对应的光路__________.
(2)为了测出三棱镜玻璃材料的折射率,若以为分界面,需要测量的量是__________,在图上标出它们.
(3)三棱镜玻璃材料折射率的计算公式是________.
(4)若在描绘三棱镜轮廓的过程中,放置三棱镜的位置发生了微小的平移(移至图中的虚线位置,底边仍重合),若仍以为分界面,则三棱镜玻璃材料折射率的测量值________真实值(填“大于”“小于”或“等于”).
在“用单摆测定重力加速度”的实验中:
①为了减小测量周期的误差,计时开始时,应选择摆球经过最___(填“高”或“低’)点的位置开始计时,且用停表测量单摆完成多次全振动所用的时间,求出周期.图甲中停表示数为一单摆振动50次所需时间,则单摆振动周期为____.
②用最小刻度为1 mm的刻度尺测摆长,测量情况如图乙所示.O为悬挂点,从图乙中可知单摆的摆长为________m.
③若用L表示摆长,T表示周期,那么重力加速度的表达式为g=_____________.
④考虑到单摆振动时空气浮力的影响后,学生甲说:“因为空气浮力与摆球重力方向相反,它对球的作用相当于重力加速度变小,因此振动周期变大.”学生乙说:“浮力对摆球的影响好像用一个轻一些的摆球做实验,因此振动周期不变”,这两个学生中________.
A.甲的说法正确 B.乙的说法正确 C.两学生的说法都是错误的
根据单摆周期公式,可以通过实验测量当地的重力加速度.如图1所示,将细线的上端固定在铁架台上,下端系一小钢球,就做成了单摆.
(1)用游标卡尺测量小钢球直径,示数如图2所示,读数为______mm.
(2)以下是实验过程中的一些做法,其中正确的有______.
a.摆线要选择细些的、伸缩性小些的,并且尽可能长一些
b.摆球尽量选择质量大些、体积小些的
c.为了使摆的周期大一些,以方便测量,开始时拉开摆球,使摆线相距平衡位置有较大的角度
d.拉开摆球,使摆线偏离平衡位置大于5°,在释放摆球的同时开始计时,当摆球回到开始位置时停止计时,此时间间隔△t即为单摆周期T
e.拉开摆球,使摆线偏离平衡位置不大于5°,释放摆球,当摆球振动稳定后,从平衡位置开始计时,记下摆球做50次全振动所用的时间△t,则单摆周期T=△t/50.
如图,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系。
(1)实验中,直接测定小球碰撞前后的速度是不容易的,但是,可以通过仅测量________(填选项前的符号),间接地解决这个问题。
A.小球开始释放高度h
B.小球抛出点距地面的高度H
C.小球做平抛运动的射程
(2)图中O点是小球抛出点在地面上的垂直投影。实验时,先将入射球m1多次从斜轨上S位置由静止释放,找到其平均落地点的位置P,测量平抛射程OP。然后,把被碰小球m2静止于轨道的水平部分,再将入射小球m1从斜轨上S位置由静止释放,与小球m2相撞,并多次重复。(小球质量关系满足m1> m2)
接下来要完成的必要步骤是__________。(填选项前的符号)
A.用天平测量两个小球的质量m1、m2
B.测量小球m1开始释放高度h
C.测量抛出点距地面的高度H
D.分别找到m1、m2相碰后平均落地点的位置M、N
E.测量平抛射程OM、ON
(3)若两球相碰前后的动量守恒,其表达式可表示为______________________[用(2)中测量的量表示]。
如图,在y>0的区域存在方向沿y轴负方向的匀强电场,场强大小为E;在y<0的区域存在方向垂直于xOy平面向外的匀强磁场.一个氕核和一个氘核先后从y轴上y=h点以相同的动能射出,速度方向沿x轴正方向.已知进入磁场时,速度方向与x轴正方向的夹角为,并从坐标原点O处第一次射出磁场. 氕核的质量为m,电荷量为q. 氘核的质量为2m,电荷量为q,不计重力.求:
(1)第一次进入磁场的位置到原点O的距离;
(2)磁场的磁感应强度大小;
(3)第一次进入磁场到第一次离开磁场的运动时间.
如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道PA在A点相切.BC为圆弧轨道的直径.O为圆心,OA和OB之间的夹角为α,sinα=,一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g.求:
(1)水平恒力的大小和小球到达C点时速度的大小;
(2)小球到达A点时动量的大小;
(3)小球从C点落至水平轨道所用的时间.