如图甲,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一匀强磁场区域, MN、PQ是匀强磁场区域的上、下水平边界,并与线框的bc边平行,磁场方向垂直于线框平面向里.现使金属线框从MN上方某一髙度处由静止开始下落(bc边始终与MN平行),并以此时为计时起点,图乙是金属线框由开始下落到离开匀强磁场的过程中,线框中感应电流随时间变化的i-t图象(图中t1、t2、t3未知).已知金属线框边长为L,质量为m,电阻为R,匀强磁场的磁感应强度为B,重力加速度为g,不计空气阻力.求:
(1)金属线框进入磁场时,线框中感应电流的方向;
(2)金属线框开始下落时,bc边距离边界MN的高度h;
(3)在t1—t2时间内,流过线框导线截面的电量q;
(4)在t1—t3时间内,金属线框产生的热量Q.
如图所示,在真空区域有半径不等的带电金属球面A和球面C,点O为它们共同的球心.球面A的电势为φA,球面C的电势为φC,仅在两球面之间存在辐向电场,其它空间无电场,球面C的半径为r,与球面C相切于O′点的直线边界线MN的另一侧充满了方向垂直于纸面向内的磁感应强度大小为B0的匀强磁场.一质量为m,电荷量为q的正电粒子甲自O点以大小为v0的初速度向小孔D(小孔尺寸远小于球面半径)发射,先后穿过金属球面上的小孔D、F,从边界线MN上的P点(图中未画出)进入磁场.已知FO′弧的弧度为.
(1)求粒子甲进入磁场时的速度大小,分析计算φA和φC应满足什么关系才能保证粒子甲穿出小孔F.
(2)粒子甲从边界线MN上的P′点(图中未画出)离开磁场,求P点与P′点的间距及粒子甲从P点运动至P′的时间.
(3)另一质量也为m,电荷量也为q的正电粒子乙自O点以大小为v0的初速度向小孔G发射,先后穿过金属球面上的小孔G、H,自边界线MN上Q点(图中未画出)进入磁场,又从Q′点(图中未画出)离开磁场,已知HO′弧的弧度也为.计算P′点与Q′点的间距,并判断当甲、乙两粒子在O点初速度大小增加到2v0,方向不变,再次让两粒子完成上述运动,则它们离开磁场时所在位置的间距将如何变化?
如图,“嫦娥三号”卫星在登月软着陆过程中,先在离月球表面100m高处静止悬停,然后匀加速下降12s,再匀减速运动下降4s至离月球表面4m高处,速度减小为零.已知月球表面重力加速度是地球表面重力加速度的六分之一, “嫦娥三号”卫星的总质量为1590kg,喷出燃料质量不计.求上述过程中:
(1)卫星运动达到的最大速度;
(2)卫星匀减速运动时的加速度大小;
(3)卫星匀减速运动时发动机的推力大小.
小丁同学对实验室中的线圈如图甲所示产生了浓厚兴趣,决定利用伏安法测量线圈电阻,实验电路如图丙所示,回答下列问题:
(1)实验前,图丙中滑动变阻器滑片应置于______填“a”或“b”端:
(2)已知实验中电压表所接量为,某次实验中电压表示数如图乙所示,则电压为______V。
(3)改变滑动变阻器滑片,待电路稳定得到多组电流、电压值如下表所示,请在图丁中作出相应的图象_________。
电压 |
|
|
|
|
|
|
|
|
电流 |
|
|
|
|
|
|
|
(4)由图象可得该线圈电阻大小为______。
某同学利用重锤的落体运动进行“验证机械能守恒定律”的实验.
(1)图甲是释放纸带瞬间的照片,其装置或操作中一处不合理的地方是__________.
(2)为完成本实验,除了图甲所示的装置外,还需要图乙中的器材是______________.
(3)同学得到了如图丙所示的一条纸带,读出O、E两点间的距离为________cm.
(4)已知图丙中每两个点之间的时间间隔为0.02 s,计算打下点E时纸带速度的大小为_________m/s(结果保留2位小数).
在探究光电效应现象时,某小组的同学分别用频率为v、2v的单色光照射某金属,逸出的光电子最大速度之比为1:2,普朗克常量用h表示,则
A.光电子的最大初动能之比为1:4
B.该金属的逸出功为当
C.该金属的截止频率为
D.用频率为的单色光照射该金属时能发生光电效应