如右图所示为圆柱形区域的横截面,在该区域加沿圆柱轴线方向的匀强磁场.带电粒子(不计重力)第一次以速度沿截面直径入射,粒子飞入磁场区域时,速度方向偏转60°角;该带电粒子第二次以速度从同一点沿同一方向入射,粒子飞出磁场区域时,速度方向偏转90°角.则带电粒子第一次和第二次在磁场中运动的( )
A.半径之比为 B.速度之比为
C.时间之比为2∶3 D.时间之比为3∶2
在磁感应强度大小为B0,方向竖直向上的匀强磁场中,水平放置一根长通电直导线,电流的方向垂直于纸面向里,如图所示,a、b、c、d是以直导线为圆心的同一圆周上的四点,在这四点中( )
A.c、d两点的磁感应强度大小相等
B.a、b两点的磁感应强度大小相等
C.c点的磁感应强度的值最小
D.b点的磁感应强度的值最大
已知一质量为m的带电液滴,经电压U加速后,水平进入互相垂直的匀强电场E和匀强磁场B中,液滴在此空间的竖直平面内做匀速圆周运动,如图,则( )
A.液滴在空间可能受4个力作用
B.液滴一定带负电
C.液滴做圆周运动的半径
D.液滴在场中运动时总能量不变
如图所示,在垂直纸面向里的匀强磁场的边界上,有两个质量和电荷量均相同的正负离子(不计重力),从点O以相同的速率先后射入磁场中,入射方向与边界成θ角,则正负离子在磁场中( )
A.运动时间相同
B.运动轨道的半径相同
C.重新回到边界时速度的大小和方向相同
D.重新回到边界的位置与O点距离相等
劳伦斯和利文斯设计出回旋加速器,工作原理示意图如图所示.置于真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电压为U.若A处粒子源产生质子的质量为m、电荷量为+q,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是
A.质子被加速后的最大速度不可能超过2πRf
B.质子离开回旋加速器时的最大动能与加速电压U成正比
C.质子第2次和第1次经过两D形盒间狭缝后轨道半径之比为∶1
D.不改变磁感应强度B和交流电频率f,经该回旋加速器加速的各种粒子的最大动能不变
如图所示,带电粒子以初速度以v0从a点进入匀强磁场,运动过程中经过b点,Oa=Ob,若撤去磁场加一个与y轴平行的匀强电场,带电粒子仍以速度以v0从a点进入电场,仍能通过b点,则电场强度E和磁感应强度B的比值为
A.v0 B.1/ v0 C.2 v0 D.v0/2