翼型飞行器有很好的飞行性能,其原理是通过对降落伞的调节,使空气升力和空气阻力都受到影响,同时通过控制动力的大小而改变飞行器的飞行状态.已知飞行器的动力F始终与飞行方向相同,空气升力F1与飞行方向垂直,大小与速度的平方成正比,即F1=C1v2;空气阻力F2与飞行方向相反,大小与速度的平方成正比,即F2=C2v2.其中C1、C2相互影响,可由运动员调节,满足如图甲所示的关系.飞行员和装备的总质量为m=90kg.(重力加速度取g=10m/s2)
(1)若飞行员使飞行器以速度v1=在空中沿水平方向匀速飞行,如图乙所示,结合甲图计算,飞行器受到的动力F为多大;
(2)若飞行员使飞行器在空中的某一水平面内做匀速圆周运动,如图丙所示,在此过程中调节C1=5.0N·s2/m2,机翼中垂线和竖直方向夹角为θ=37°,求飞行器做匀速圆周运动的半径r和速度v2大小.(已知sin37°=0.6,cos37°=0.8)
LED灯的核心部件是发光二极管.某同学欲测量一只工作电压为2.9V的发光 二极管的正向伏安特性曲线,所用器材有:电压表(量程3V,内阻约3kΩ),电流表 (用多用电表的直流25mA挡替代,内阻约为5Ω),滑动变阻器(0-20Ω),电池组(内 阻不计),电键和导线若干.他设计的电路如图(a)所示.回答下列问题:
(1)根据图(a),在实物图(b)上完成连线_______;
(2)调节变阻器的滑片至最____端(填“左”或“右”),将多用电表选择开关拔至直流25mA挡,闭合电键;
(3)某次测量中,多用电表示数如图(c),则通过二极管的电流为_____ mA;
(4)该同学得到的正向伏安特性曲线如图(d)所示.由曲线可知,随着两端电压增加,二极管的正向电阻____(填“增大”、“减小”或“不变”);当两端电压为2.9V时,正向电阻为_____kΩ(结果取两位有效数字);
(5)若实验过程中发现,将变阻器滑片从一端移到另一端,二极管亮度几乎不变,电压表示数在2.7V-2.9V之间变化,试简要描述一种可能的电路故障:____.
用如图甲实验装置验证m1、m2组成的系统机械能守恒.m2从高处由静止开始下落,m1上拖着的纸带打出一系列的点,对纸带上的点迹进行测量,即可验证机械能守恒定律.下图给出的是实验中获取的一条纸带:0是打下的第一个点,每相邻两计数点间还有4个点(图甲中未标出),计数点间的距离如图乙所示.已知m1=50g、m2=150g则(g取9.8m/s2,结果保留两位有效数字)
(1)在纸带上打下记数点5时的速度v=_______;
(2)在打点0~5过程中系统动能的增量△EK=________,系统势能的减少量△EP=________,由此得出的结论是_____________________________
(3)若某同学作出-h图象如图丙,则当地的实际重力加速度g=___________.
如图所示,某次足球训练,守门员将静止的足球从M 点踢出,球斜抛后落在60m外地面上的P点。发球的同时,前锋从距P点11.5m 的N点向P点做匀加速直线运动,其初速度为2m/s,加速度为4m/s2,当其速度达到8m/s后保持匀速运动。若前锋恰好在P点追上足球,球员和球均可视为质点,忽略球在空中运动时的阻力,重力加速度 g取 10 m/s2。下列说法正确的是
A. 前锋加速的距离为7.5m
B. 足球在空中运动的时间为 2.3s
C. 足球运动过程中的最小速度为30 m/s
D. 足球上升的最大高度为10m
如图所示,匀强电场方向水平向右带负电的小球从斜面顶端的O点水平向右抛出,初速度大小为v0,小球带电量为﹣q,质量为m,运动轨迹如图中曲线所示,小球打到斜面上P点的速度方向竖直向下。已知斜面与小球初速度方向的夹角为60°,重力加速度为g,不计空气阻力,则下列说法正确的是( )
A. 匀强电场的场强大小为
B. 小球做曲线运动的加速度大小为
C. 小球由O点到P点用时
D. 小球通过P点时的速度大小为
2018年6月14日11时06分,探月工程嫦娥四号任务“鹊桥”中继星成为世界首颗成功进入地月拉格朗日L2点的Halo使命轨道的卫星,为地月信息联通搭建“天桥”。如图所示,该L2点位于地球与月球连线的延长线上,“鹊桥”位于该点,在几乎不消耗燃料的情况下与月球同步绕地球做圆周运动。已知地球、月球和“鹊桥”的质量分别为Me、Mm、m,地球和月球之间的平均距离为R,L2点离月球的距离为x,则
A. “鹊桥”的线速度大于月球的线速度
B. “鹊桥”的向心加速度小于月球的向心加速度
C. x满足
D. x满足