如图所示,半径为R1=1.8 m的光滑圆弧与半径为R2=0.3 m的半圆光滑细管平滑连接并固定,光滑水平地面上紧靠管口有一长度为L=2.0 m、质量为M=1.5 kg的木板,木板上表面正好与管口底部相切,处在同一水平线上,木板的左方有一足够长的台阶,其高度正好与木板相同.现在让质量为m2=2 kg的物块静止于B处,质量为m1=1 kg的物块从光滑圆弧顶部的A处由静止释放,物块m1下滑至B处和m2碰撞后不再分开,整体设为物块m(m=m1+m2).物块m穿过半圆管底部C处滑上木板使其从静止开始向左运动,当木板速度为2 m/s时,木板与台阶碰撞立即被粘住(即速度变为零),若g=10 m/s2,物块碰撞前后均可视为质点,圆管粗细不计.
(1)求物块m1和m2碰撞过程中损失的机械能;
(2)求物块m滑到半圆管底部C处时所受支持力大小;
(3)若物块m与木板及台阶表面间的动摩擦因数均为μ=0.25,求物块m在台阶表面上滑行的最大距离.
如图所示,真空环境中xOy平面的第Ⅰ象限内有方向平行于y轴的匀强电场,一电子从点P(0,)以初速度v0垂直y轴射入电场中,从x轴上点Q(0,2L)射出。已知电子的电荷量为e,质量为m,不计电子受到的重力。求:
(1)求匀强电场的电场强度大小;
(2)若在第Ⅳ象限内有一过O点且与x轴成30°角的足够长的平面感光胶片,求电子从P点射到感光胶片的时间。
为了研究小灯泡的电阻随温度变化的规律,某同学设计了如图甲所示的电路,电路中选用的小灯泡的额定值为“2.8V 0.28A”。
(1)实验室提供的滑动变阻器有R1(50Ω,1.5A)、R2(5Ω,2A),本实验应选用_______(选填“R1”或“R2”)。
(2)根据设计的电路图,连接好乙图中的电路_______。
(3)在某次测量中,电压表的示数如图丙所示,其示数为_______ V。
(4)图丁中a为电压为1.00V时图线上的点的割线,b为该点的切线,要求图线上该点对应的灯泡的电阻,应求_______ (选填“a”或“b”)的斜率,由图线可以小灯泡的电阻随温度的升高而_______。
某同学利用图甲所示的装置测量轻弹簧的劲度系数。光滑的细杆(图中未画出)和直尺水平固定在铁架台上,一轻弹簧穿在细杆上,其左端固定,右端与细绳连接;细绳跨过光滑定滑轮,其下端可以悬挂钩码(实验中,每个钩码的质量均为m=20.0g)。弹簧右端连有一竖直指针,其位置可在直尺上读出。实验步骤如下:
①在绳下端挂上一个钩码,调整滑轮,使弹簧与滑轮间的细线水平且弹簧与细杆没有接触;
②系统静止后,记录钩码的个数及指针的位置;
③逐次增加钩码个数,并重复步骤②(保持弹簧在弹性限度内);
④用n表示钩码的个数,l表示相应的指针位置,作出l-n图像如图丙所示。
回答下列问题:
(1)某次挂上钩码后,指针指到的位置如图乙所示,则此时的示数为_______cm。
(2)若当地的重力加速度g=9.8m/s2,则本实验中弹簧的劲度系数为_______N/m(结果保留三位有效数字)。
图甲为一运动员(可视为质点)进行三米板跳水训练的场景,某次跳水过程中运动员的速度v-时间t图象如图乙所示,t=0是其向上起跳的瞬间,此时跳板回到平衡位置。t3=5.5t1,不计空气阻力,重力加速度g=10m/s2。则下列判断正确的是
A.运动员入水时的速度大小为2m/s
B.运动员离开跳板后向上运动的位移大小为m
C.运动员在水中向下运动的加速度大小为20m/s2
D.运动员入水的深度为1.5m
质量为m的球从离地面H高处以初速度v0水平抛出,下列图象分别描述了球在空中运动的速率v、重力的瞬时功率P随时间t的变化关系和动能Ek、机械能E随小球距地面高度h的变化关系,选地面重力势能为零且不计空气阻力,其中可能正确的有( )
A. B.
C. D.