一辆汽车沿平直道路行驶,其v-t图象如图所示.在t=0到t=40s这段时间内,汽车的位移是( )
A.0
B.30m
C.750m
D.1200m
如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H.上升第一个所用的时间为t1,第四个所用的时间为t2.不计空气阻力,则满足
A.1<<2 B.2<<3 C.3<<4 D.4<<5
如图甲所示,粗糙水平轨道与半径为R的竖直光滑、绝缘的半圆轨道在B点平滑连接,过半圆轨道圆心0的水平界面MN的下方分布有水平向右的匀强电场E,质量为m的带正电小滑块从水平轨道上A点由静止释放,运动中由于摩擦起电滑块电量会增加,过B点后电量保持不变,小滑块在AB段加速度随位移变化图像如图乙.已知A、B间距离为4R,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g,不计空气阻力,求
(1)小滑块释放后运动至B点过程中电荷量的变化量
(2)滑块对半圆轨道的最大压力大小
(3)小滑块再次进入电场时,电场大小保持不变、方向变为向左,求小滑块再次到达水平轨道时的速度大小以及距B的距离
如图所示,BCDG是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中。现有一质量为m、带正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为mg,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g。
(1)若滑块从水平轨道上距离B点s=3R的A点由静止释放,滑块到达B点时速度为多大?
(2)在(1)的情况下,求滑块到达C点时受到轨道的作用力大小;
(3)改变s的大小,使滑块恰好始终沿轨道滑行,且从G点飞出轨道,求滑块在圆轨道上滑行过程中的最小速度大小。
如图所示,一带电荷量为+q、质量为m的小物块处于一倾角为的光滑斜面上,当整个装置被置于一水平向右的匀强电场中,小物块恰好静止。重力加速度取g,sin=0.6,cos=0.8。求:
(1)水平向右电场的电场强度的大小;
(2)若将电场强度减小为原来的,小物块的加速度是多大;
(3)电场强度变化后小物块下滑距离L时的动能。
如图,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场.自该区域上方的A点将质量为m、电荷量分别为q和–q(q>0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出.小球在重力作用下进入电场区域,并从该区域的下边界离开.已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时的动能的1.5倍.不计空气阻力,重力加速度大小为g.求
(1)M与N在电场中沿水平方向的位移之比;
(2)A点距电场上边界的高度;
(3)该电场的电场强度大小.