美国物理学家劳伦斯于1932年发明的回旋加速器,应用带电粒子在磁场中做圆周运动的特点,能使粒子在较小的空间范围内经过电场的多次加速获得较大的能量,使人类在获得较高能量带电粒子方面前进了一大步.图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场场强恒定,且被限制在A、C板间,带电粒子从P0处以速度v0沿电场线方向射入加速电场,经加速后再进入D型盒中的匀强磁场做匀速圆周运动.对于这种改进后的回旋加速器,下列说法正确的是( )
A.带电粒子每运动一周被加速两次
B.带电粒子每运动一周P1P2=P2P3
C.加速粒子的最大速度与D形盒的尺寸有关
D.加速电场方向需要做周期性的变化
如图所示,ABC是两带电量均为Q的正点电荷连线的中垂线上的三点,B是两线段的交点,A点固定有一带电量同为Q的负点电荷,现将一电子从B点由静止释放,电子运动中会经由C点继续向前运动,则( )
A.从B到C,电场力对该电子一直不做功
B.电子从B到C做加速度变大的加速运动
C.电子在B、C两点时的电势能大小关系是EPBEPC
D.若电子可回到B点,则回到B点时速度不为零
在绝缘光滑的水平面上相距为6L的A、B两处分别固定正电荷QA、QB,两电荷的位置坐标如图甲所示。图乙是AB连线之间的电势φ与位置x之间的关系图像,图中x=L点为图线的最低点,若在x=2L的C点由静止释放一个质量为m、电量为+q的带电小球(可视为质点),下列有关说法正确的是( )
A. 小球在x=L处的速度最大
B. 小球一定可以到达x=—2L点处
C. 小球将以x=L点为作中心完全对称的往复运动
D. 固定在AB处的电荷的电量之比为QA∶QB=8∶1
如图所示,M、N和P是以MN为直径的半圆弧上的三点,O为半圆弧的圆心,∠MOP=60°,在M、N处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的磁感应强度大小为B1,若将N处的长直导线移至P处,则O点的磁感应强度大小变为B2,则B2与B1之比为( )
A.1∶1 B.1∶2 C.∶1 D.∶2
如图(a)所示,M、N为中心开有小孔的平行板电容器,两板间距D=2.5m,右侧有一垂直于纸面向里的匀强磁场,磁感应强度B=1×10-6T,磁场区域足够长,宽度d=1m。在电容器两极板间加上随时间周期性变化的交变电压,电压大小为2.5V,如图(b)所示,其周期T=8×10-6s。现有一束带负电的粒子,在内源源不断地从M板的小孔处射入电容器内,粒子的初速度视为0,其荷质比C/kg,不计粒子重力,求:
(1)粒子在电容器中的加速度大小;
(2)时刻射入的粒子进入磁场后做圆周运动的轨道半径;
(3)若在磁场的右边界设置一屏幕,则时刻射入的粒子打在屏幕上的位置。
如图所示,abcd为一矩形金属线框,总质量为m,其中ab=cd=L,ab边的电阻为R,cd边的电阻为,其它部分的电阻不计,整个装置用两根劲度系数均为k的绝缘轻弹簧悬挂起来。下方存在一垂直于纸面向里的匀强磁场,磁感应强度大小为B。初始时刻,使两弹簧处于自然长度,现给线框一竖直向下的初速度v0,当cd边第一次速度为0时,两根弹簧的弹力均为mg,整个下降过程中cd边始终未离开磁场,ab边未进入磁场。已知重力加速度大小为g,劲度系数为k的弹簧当形变量为x时具有的弹性势能。在整个下降过程中,求:
(1)通过ab边的电荷量;
(2)ab边上产生的热量.