如图(a)所示,轻质弹簧左端固定在墙上,自由状态时右端在C点,C点左侧地面光滑、右侧粗糙.用可视为质点的质量为m=1kg的物体A将弹簧压缩至O点并锁定.以O点为原点建立坐标轴.现用水平向右的拉力F作用于物体A,同时解除弹簧锁定,使物体A做匀加速直线运动,拉力F随位移x变化的关系如图(b)所示,运动到0.225m处时,撤去拉力F.
(1)求物体A与粗糙地面间的动摩擦因数以及向右运动至最右端的位置D点的坐标;
(2)若在D点给物体A一向左的初速度,物体A恰好能将弹簧压缩至O点,求物体A到C点时的速度;
(3)质量为M=3kg的物体B在D点与静止的物体A发生弹性正碰,碰后物体A向左运动并恰能压缩弹簧到O点,求物体B与A碰撞前的瞬时速度.
将一轻弹簧竖直放置在地面上,在其顶端由静止释放一质量为m的物体,当弹簧被压缩到最短时,其压缩量为l.现将该弹簧的两端分别栓接小物块A与B,并将它们静置于倾角为30°的足够长固定斜面上,B靠在垂直于斜面的挡板上,P点为斜面上弹簧自然状态时A的位置,如图所示.由斜面上距P点6l的O点,将另一物块C以初速度t=5沿斜面向下滑行,经过一段时间后与A发生正碰,碰撞时间极短,碰后C、A紧贴在一起运动,但不粘连,已知斜面P点下方光滑、上方粗糙,A、B、C的质量均为4m,与斜面间的动摩擦因数均为μ=,弹簧劲度系数k=,弹簧始终在弹性限度内,重力加速度为g.求:
(1)C与A碰撞前瞬间的速度大小;
(2)C最终停止的位置与O点的距离
(3)判断上述过程中B能否脱离挡板,并说明理由.
如图所示,一圆心为O半径为R的光滑半圆轨道固定在竖直平面内,其下端和粗糙的水平轨道在A点相切,AB为圆弧轨道的直径.质量分别为m、2m的滑块1、2用很短的细线连接,在两滑块之间夹有压缩的短弹簧(弹簧与滑块不固连),滑块1、2位于A点.现剪断两滑块间的细线,滑块恰能过B点,且落地点恰与滑块2停止运动的地点重合.滑块1、2可视为质点,不考虑滑块1落地后反弹,不计空气阻力,重力加速度为g,求
(1)滑块1过B点的速度大小;
(2)弹簧释放的弹性势能大小;
(3)滑块2与水平轨道间的动摩擦因数.
如图所示,从A点以v0的水平速度抛出一质量m=1kg的小物块(可视为质点),当物块运动至B点时,恰好沿切线方向进入光滑圆弧轨道BC,经圆孤轨道后滑上与C点等高静止在光滑水平面的长木板上,圆弧轨道C端切线水平.已知长木板的质量M=4kg,A、B两点距C点的高度分别为H=0.6m、h=0. 15m,R=0. 75m,物块与长木板之间的动摩擦因数μ=0.5.求:
(1)水平抛出速度v0?
(2)长木板至少为多长,才能保证小物块不滑出长木板?
如图所示,固定的光滑竖直杆上套一个滑块A,与滑块A连接的细线绕过光滑的轻质定滑轮连接滑块B,细线不可伸长,滑块B放在粗糙的固定斜面上,连接滑块B的细线和斜面平行,滑块A从细线水平位置由静止释放(不计轮轴处的摩擦),到滑块A下降到速度最大(A未落地,B未上升至滑轮处)的过程中
A. 滑块A和滑块B的加速度大小一直相等
B. 滑块A减小的机械能等于滑块B增加的机械能
C. 滑块A的速度最大时,滑块A的速度大于B的速度
D. 细线上张力对滑块A做的功等于滑块A机械能的变化量
如图a,在竖直平面内固定一光滑的半圆形轨道ABC,小球以一定的初速度从最低点A冲上轨道,图b是小球在半圆形轨道上从A运动到C的过程中,其速度的平方与其对应高度的关系图象。已知小球在最高点C受到轨道的作用力为2.5 N,空气阻力不计,B点为AC轨道的中点,重力加速度g取10 m/s2,下列说法正确的是( )
A.图b中x=36 m2·s-2
B.小球质量为0.2 kg
C.小球在A点时重力的功率为5 W
D.小球在B点受到的轨道作用力为8.5 N