如图所示,一带电塑料小球质量为m,用丝线悬挂于O点,并在竖直平面内摆动,最大摆角为,水平磁场垂直于小球摆动的平面。当小球自左方最大摆角处摆到最低点时,恰进入磁场区域且悬线上的张力恰为零,则小球自右方最大摆角处摆到最低点时悬线上的张力为( )
A.0 B.2mg C.4mg D.6mg
带电小球以一定的初速度v0竖直向上抛出,能够达到的最大高度为h1;若加上水平方向的匀强磁场,且保持初速度仍为v0,小球上升的最大高度为h2;若加上水平方向的匀强电场,且保持初速度仍为v0,小球上升的最大高度为h3,若加上竖直向上的匀强电场,且保持初速度仍为v0,小球上升的最大高度为h4,如图所示.不计空气,则( )
A.一定有h1=h3 B.一定有h1<h4
C.h2与h4无法比较 D.h1与h2无法比较
如图所示,在平面直角坐标系xoy中,在第二象限内存在沿x轴负方向的匀强电场;在第一象限内某区域存在方向垂直于坐标平面向里的有界圆形匀强磁场(图中未画出).一粒子源固定在x轴上坐标为(-L,0)的A点,粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上坐标为(0,2L)的C点,电子继续前进距离L后进入磁场区域,再次回到x轴时与x轴正方向成45°夹角.已知电子的质量为m,电荷量为e,有界圆形匀强磁场的磁感应强度,不考虑粒子的重力好粒子之间的相互作用,求:
(1)匀强电场的电场强度E的大小;
(2)圆形磁场的最小面积;
(3)电子从进入电场到再次回到x轴过程的总时间。
如图,某一新型发电装置的发电管是横截面为矩形的水平管道,管道的长为L、宽度为d、高为h,上下两面是绝缘板,前后两侧面M、N是电阻可忽略的导体板,两导体板与开关S和定值电阻R相连.整个管道置于磁感应强度大小为B,方向沿z轴正方向的匀强磁场中.管道内始终充满电阻率为ρ的导电液体(有大量的正、负离子),且开关闭合前后,液体在管道进、出口两端压强差的作用下,均以恒定速率v0沿x轴正向流动,液体所受的摩擦阻力不变.
(1)求开关闭合前,M、N两板间的电势差大小U0;
(2)求开关闭合前后,管道两端压强差的变化Δp;
(3)调整矩形管道的宽和高,但保持其它量和矩形管道的横截面S=dh不变,求电阻R可获得的最大功率Pm及相应的宽高比d/h的值.
小明同学设计了一个电磁天平,如图1所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L=0.1m,竖直边长H=0.3m,匝数为.线圈的下边处于匀强磁场内,磁感应强度,方向垂直线圈平面向里.线圈中通有可在0~2.0A范围内调节的电流I.挂盘放上待测物体后,调节线圈中电流使得天平平衡,测出电流即可测得物体的质量.(重力加速度取)
(1)为使电磁天平的量程达到0.5kg,线圈的匝数至少为多少
(2)进一步探究电磁感应现象,另选匝、形状相同的线圈,总电阻,不接外电流,两臂平衡,如图2所示,保持不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B随时间均匀变大,磁场区域宽度.当挂盘中放质量为0.01kg的物体时,天平平衡,求此时磁感应强度的变化率.
半径为a的圆形区域内有均匀磁场,磁感应强度为B=0.2T,磁场方向垂直纸面向里,半径为b的金属圆环面与磁场垂直,其中a=0.4m,b=0.6m.金属环上分别接有灯L1、L2,两灯的电阻均为R=2Ω,一金属棒MN与金属环接触良好,棒与环的电阻均忽略不计.
(1)若棒以v0=10m/s的速率在环上向右匀速滑动,求棒滑过圆环直径的瞬时,(如图),MN中的电动势和流过灯L1的电流.
(2)撤去中间的金属棒MN,将右面的半圆环以为轴向上翻转90o,若此时磁场随时间均匀变化,其变化率为,求L1的功率.