下列关于物理学思想方法的叙述错误的是( )
A.探究加速度与力和质星关系的实验中运用了控制变量法 B.场强和电势的定义都运用了比值法
C.力学中将物体看成质点运用了理想化模型法 D.△t→0时的平均速度可看成瞬时速度运用了等效替代法
科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN上方区域的平行长金属板AB间电压大小可调,平行长金属板AB间距为d,匀强磁场的磁感应强度大小为B,方向垂直纸面向里.MN下方区域I、II为两相邻的方向相反的匀强磁场区,宽度均为3d,磁感应强度均为B,ef是两磁场区的分界线,PQ是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.
(1)要使速度为v的正电子匀速通过平行长金属极板AB,求此时金属板AB间所加电压U;
(2)通过调节电压U可以改变正电子通过匀强磁场区域I和II的运动时间,求沿平行长金属板方向进入MN下方磁场区的正电子在匀强磁场区域I和II运动的最长时间tm;
(3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN下方磁场区,它们既能被收集板接收又不重叠,求金属板AB间所加电压U的范围.
如图所示,在xoy竖直平面内,长L的绝缘轻绳一端固定在第一象限的P点,另一端栓有一质量为m、带电荷量为+q的小球,OP距离也为L且与x轴的夹角为60∘.在x轴上方有水平向左的匀强电场,场强大小为,在x轴下方有竖直向上的匀强电场,场强大小为mg/q,过O和P两点的虚线右侧存在方向垂直xOy平面向外、磁感应强度为B的匀强磁场.小球置于y轴上的C点时,绳恰好伸直且与y轴夹角为30∘,小球由静止释放后将沿CD方向做直线运动,到达D点时绳恰好绷紧,小球沿绳方向的分速度立即变为零,并以垂直于绳方向的分速度摆下,到达O点时将绳断开.不计空气阻力.求:
(1)小球刚释放瞬间的加速度大小a;
(2)小球到达O点时的速度大小v;
(3)小球从O点开始到最终离开x轴的时间t.
如图甲所示,在xOy平面内有足够大的匀强电场E,在y轴左侧平面内有足够大的磁场,磁感应强度B1随时间t变化的规律如图乙所示,选定磁场垂直纸面向里为正方向。在y轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3m的圆形区域(图中未画出)且圆的左侧与y轴相切,磁感应强度B2=0.8T,t=0时刻,一质量m=8×10-4kg、电荷量q=+2×10-4C的微粒从x轴上xp=-0.8m处的P点以速度v=0.12m/s向x轴正方向入射。已知该带电微粒在电磁场区域做匀速圆周运动。(g取10m/s2)
(1)求电场强度。
(2)若磁场15πs后消失,求微粒在第二象限运动过程中离x轴的最大距离;
(3)若微粒穿过y轴右侧圆形磁场时速度方向的偏转角最大,求此圆形磁场的圆心坐标(x,y)。
在高度为H的竖直区域内分布着互相垂直的匀强电场和匀强磁场,电场方向水平向左;磁感应强度大小为B,方向垂直纸面向里。在该区域上方的某点A,将质量为m、电荷量为+q的小球,以某一初速度水平抛出,小球恰好在该区域作直线运动。已知重力加速度为g。
(1)求小球平抛的初速度v0;
(2)若电场强度大小为E,求A点距该区域上边界的高度h;
(3)若令该小球所带电荷量为-q,以相同的初速度将其水平抛出,小球离开该区域时,速度方向竖直向下,求小球穿越该区域的时间。
如图所示,三块挡板围成截面边长L=1.2m的等边三角形区域,C、P、Q分别是MN、AM和AN中点处的小孔,三个小孔处于同一竖直面内,MN水平,MN上方是竖直向下的匀强电场,场强E=4×10-4N /C.三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B1;AMN以外区域有垂直纸面向外, 磁感应强度大小为B2=3B1的匀强磁场.现将一比荷q/m=108C/kg的帯正电的粒子,从O点由静止释放,粒子从MN小孔C进入内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入外部磁场.已知粒子最终回到了O点,OC相距2m.设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:
(1)磁感应强度B1的大小;
(2)粒子从O点出发,到再次回到O点经历的时间;
(3)若仅改变B2的大小,当B2满足什么条件时,粒子可以垂直于MA经孔P回到O点(若粒子经过A点立即被吸收).