如图所示,高为H的塔吊臀上有一可以沿水平方向运动的小车A,小车A下的绳索吊若重物B.在小车A与物体B以相同的水平速度沿吊臂向右匀速运动的同时,绳索将重物B 向上吊起,A、B之间的距离以d=H-t2规律随时间t变化,则()
A.绳索受到的拉力不断増大 B.绳索对重物做功的功率不断増大
C.重物做速度大小不断减小的曲线运动 D.重物做加速度大小不断减小的曲线运动
历史上有些科学家曾把在相等位移内速度变化相等的单向直线运动称为“匀变速直线运动”(现称“另类匀变速直线运动”),“另类加速度”定义为,其中和分别表示某段位移内的初速度和末速度,表示物体做加速运动,表示物体做减速运动.而现在物理学中加速度的定义式为,下列说法正确的是( )
A.若A不变,则a也不变
B.若且保持不变,则a逐渐减小
C.若A不变,则物体在中间位置处的速度为
D.若A不变,则物体在中间位置处的速度为
下列关于物理学思想方法的叙述错误的是( )
A.探究加速度与力和质星关系的实验中运用了控制变量法 B.场强和电势的定义都运用了比值法
C.力学中将物体看成质点运用了理想化模型法 D.△t→0时的平均速度可看成瞬时速度运用了等效替代法
科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN上方区域的平行长金属板AB间电压大小可调,平行长金属板AB间距为d,匀强磁场的磁感应强度大小为B,方向垂直纸面向里.MN下方区域I、II为两相邻的方向相反的匀强磁场区,宽度均为3d,磁感应强度均为B,ef是两磁场区的分界线,PQ是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.
(1)要使速度为v的正电子匀速通过平行长金属极板AB,求此时金属板AB间所加电压U;
(2)通过调节电压U可以改变正电子通过匀强磁场区域I和II的运动时间,求沿平行长金属板方向进入MN下方磁场区的正电子在匀强磁场区域I和II运动的最长时间tm;
(3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN下方磁场区,它们既能被收集板接收又不重叠,求金属板AB间所加电压U的范围.
如图所示,在xoy竖直平面内,长L的绝缘轻绳一端固定在第一象限的P点,另一端栓有一质量为m、带电荷量为+q的小球,OP距离也为L且与x轴的夹角为60∘.在x轴上方有水平向左的匀强电场,场强大小为,在x轴下方有竖直向上的匀强电场,场强大小为mg/q,过O和P两点的虚线右侧存在方向垂直xOy平面向外、磁感应强度为B的匀强磁场.小球置于y轴上的C点时,绳恰好伸直且与y轴夹角为30∘,小球由静止释放后将沿CD方向做直线运动,到达D点时绳恰好绷紧,小球沿绳方向的分速度立即变为零,并以垂直于绳方向的分速度摆下,到达O点时将绳断开.不计空气阻力.求:
(1)小球刚释放瞬间的加速度大小a;
(2)小球到达O点时的速度大小v;
(3)小球从O点开始到最终离开x轴的时间t.
如图甲所示,在xOy平面内有足够大的匀强电场E,在y轴左侧平面内有足够大的磁场,磁感应强度B1随时间t变化的规律如图乙所示,选定磁场垂直纸面向里为正方向。在y轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3m的圆形区域(图中未画出)且圆的左侧与y轴相切,磁感应强度B2=0.8T,t=0时刻,一质量m=8×10-4kg、电荷量q=+2×10-4C的微粒从x轴上xp=-0.8m处的P点以速度v=0.12m/s向x轴正方向入射。已知该带电微粒在电磁场区域做匀速圆周运动。(g取10m/s2)
(1)求电场强度。
(2)若磁场15πs后消失,求微粒在第二象限运动过程中离x轴的最大距离;
(3)若微粒穿过y轴右侧圆形磁场时速度方向的偏转角最大,求此圆形磁场的圆心坐标(x,y)。